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FOREWORD

The Turkish Academy of Sciences (TUBA) is an autonomous apex body for the de-
velopment and promotion of sciences in Turkey. The origins of the Academy go back 
to the Ottoman society called the “Encümen-i Dāniş” (Society of Scholars), which 
was founded in 1851 and known as the first Turkish science academy in the modern 
sense. TUBA is the single national academy in Turkey, and its interest covers all 
scientific fields, which are grouped under the following three categories: a) basic and 
engineering sciences, b) health and life sciences, and c) social sciences and human-
ities. TUBA is committed to contributing to the promotion of scientific research by 
organizing working groups, offering grants and awards, preparing, and supporting the 
preparation of, scientific reports, as well as by collaborating with sister academies all 
around the world. 

Supporting and publishing studies on the history of science are among TUBA’s pri-
orities with the intention of increasing awareness regarding scholarly and scientific 
exchanges across cultures throughout history. In this respect, as TUBA’s president, 
I would like to express my pleasure to mark the publication of the volume at hand 
entitled “Islamic Astronomy and Copernicus.” It brings together 15 articles penned 
by F. Jamil Ragep, which were earlier published in journals, encyclopaedias, or ed-
ited books. It is important for us to reprint these articles which have made, and will 
continue to make, substantial contributions to the literature on the Islamic influence 
on Copernican astronomy. Moreover, F. Jamil Ragep was the recipient of the TUBA 
International Academy Prize in the Social Sciences and Humanities in 2019 thanks 
to his studies in the field, especially those dealing with the Islamic background of the 
Copernican system. We are pleased to draw attention to F. Jamil Ragep’s scholarship 
on this subject with this publication.

This foreword is too short to highlight properly the significance and context of the 
articles in this volume but let me stress one of F. Jamil Ragep’s remarkable historio-
graphic achievements. His scholarship leaves no doubt that in order to make sense of 
the ways in which Islamic astronomy had an influence on European astronomy in gen-
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eral and on Copernicus in particular, along with examining technical and astronomical 
contents of the key texts connecting Copernicus’s scholarship to Islamic astronomical 
traditions, one should also deal with intellectual and philosophical discussions that 
later stimulated the astronomical and cosmological transformations in the medieval 
and early modern periods. This broader perspective adopted by F. Jamil Ragep paved 
the way for new evidence regarding the Islamic background to the scientific and intel-
lectual environment in which Copernicus had flourished.

I hope that the publication of this volume will provide an insight for those interested 
in this important episode of the history of science. In line with TUBA’s mission of 
promoting rigorous scientific research, we are committed to sharing this volume with 
a wider audience. In this respect, it will be available as an open-access publication on 
our website, and we will send its copies to many Turkish libraries, TUBA’s counter-
part science academies, and several umbrella organizations.    

By way of conclusion, I would like to express my heartfelt gratitude to the dear author 
F. Jamil Ragep, and his former student Hasan Umut, who contributed to the prepara-
tion of the work for publication. My special thanks also go to the TUBA staff who put 
their efforts to make this publication possible.

Prof. Dr. Muzaffer SEKER
       TÜBA President 
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INTRODUCTION

There has been considerable scholarly interest in the question of the Islamic 
background to early modern European astronomy and particularly to the astronomy 
of Nicholas Copernicus (1473-1543 CE). There is virtually no controversy, at least 
among reputable scholars, that Islamic astronomy influenced medieval and early 
modern astronomy through the Latin translations or reworkings of numerous Islamic 
astronomical works and through the translations of Arabic translations of Greek 
astronomical texts. To get a sense of the range and depth of that influence, examples 
are numerous: one need only cite works by al-Battānī (Albategnius [Albatenius], d. 
317 H/929 CE), Thābit ibn Qurra (d. 288 H/901 CE), and al-Biṭrūjī (Alpetragius, fl. 
ca. 1200 CE), as well as the twelfth-century Latin translation of Ptolemy’s (fl. 140 CE) 
Almagest that apparently used multiple Arabic versions. Much more debatable has 
been the claim that Copernicus’s models were borrowed—wholesale—from Islamic 
sources. The articles herein collected are related to this question, and I am deeply 
indebted to the Turkish Academy of Sciences (TÜBA) for making them more widely 
available.  

I was initially reluctant to enter into the Copernicus question. The wealth of 
unexamined Islamic scientific writings, I believed and still believe, make it imperative 
to contextualize those works, especially the many neglected works after the so-called 
“Golden Age,” which has been erroneously claimed to have ended about 1200 CE. 
The question of influence on other cultural groups seemed to me at the time to be more 
properly within the purview of those expert in their traditions and languages. And 
the contributions of scholars such as Noel Swerdlow and Otto Neugebauer certainly 
supported that view. But it has become clear to me that the Islamic context, which 
is not readily accessible to Latinists, can assist Europeanists in understanding the 
sometimes arcane astronomical models and epistemic choices of their subjects. The 
Islamic context may also help Latinists and early modernists take into account the 
evolution of scientific ideas and avoid the temptation to assume the ideas, models, 
instruments, etc. they encounter were new and unprecedented. Of course, there is 
always the possibility of “parallelism”; since the Islamic and European scientific 
traditions had similar sources, it would not be surprising that new ideas in one culture 
were “rediscovered” independently in the another. But recent historical research has 
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shown over and over again that the diffusion and exchange of science was a reality 
long before the modern age, considerably undercutting the parallelism argument.

The fifteen articles included in this volume are divided into four sections, each 
emphasizing a different aspect of the Islam-Copernicus connection. The first 
section includes three articles that are more general in nature. “Copernicus and His 
Islamic Predecessors” provides a historiographical overview of the discovery of 
the mathematical connections between Islamic astronomers and Copernicus. But I 
stress that focusing on the mathematical models is not sufficient for understanding 
the possible influence of Islamic thinkers on Copernicus; one must also take into 
account the rise of a kind of “mathematical humanism” within an Islamic context 
that made it possible to question the Aristotelian doctrine of a non-moving Earth at 
the center of the universe. This argument is developed in “Freeing Astronomy from 
Philosophy,” which deals with the influence of Islamic doctrines on the development 
of science in Islam. In particular, I argue that the criticism by Islamic theologians of 
Aristotelian tenets, especially the claim that natural philosophy dictated a stationary 
Earth, made it possible to consider other alternatives. This was most forcefully 
articulated by the fifteenth-century theologian/scientist ʿAlī Qushjī (d. 879 H/1474 
CE). The last article in this section, “Islamic Reactions to Ptolemy’s Imprecisions,” 
explores the rather dramatic increase in accuracy of observations during the Islamic 
period and proposes Islam’s creationist perspective, which prioritized the phenomenal 
world of the senses over the Platonic world of “Ideas,” as a possible explanation. 
Along with the development of trigonometry and other mathematical tools, this 
often underappreciated aspect of the Islamic contribution to science should be seen 
as a significant transformation that was an important component of the transition to 
modern science.

The next section includes five articles concerning the Ṭūsī-couple, which is a device 
invented by Naṣīr al-Dīn al-Ṭūsī (d. 672 H/1274 CE) that produces a straight-line 
motion from two circular motions. J. L. E. Dreyer in 1906 CE had already pointed out 
that Ṭūsī’s device was used by Copernicus,1 and many historians of science have since 
then emphasized the couple as significant evidence of transmission. In addition to 
the articles included here, I dealt with the couple in detail in my two-volume edition, 
translation, and study of Ṭūsī’s Memoir on Astronomy (al-Tadhkira fī ʿ ilm al-hayʾa).2 In 
“The Two Versions of the Ṭūsī Couple,” I emphasized that Ṭūsī had actually developed 

1	 J. L. E. Dreyer, History of the Planetary Systems from Thales to Kepler (Cambridge: Cambridge University Press, 1906), 269.
2	 F. J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir on Astronomy, 2 vols. (New York: Springer, 1993), 2: 427-57.
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two separate devices, one that produced rectilinear oscillation, while the intention of 
the other was to generate a curvilinear oscillation on the surface of a sphere. The 
rectilinear oscillation was mainly used for longitudinal motions, allowing Ṭūsī to treat 
distance independently from circular motion for his planetary models. The curvilinear 
version was used, among other things, for planetary latitudes. In all cases, the purpose 
was to produce motions that would avoid Ptolemy’s violations of uniform, circular 
motions in the celestial region. “From Tūn to Toruń: The Twists and Turns of the Ṭūsī-
Couple” is my most recent summary of both the mathematical and historical aspects 
of the couple. Among the surprising things I discovered since my initial research was 
that Ṭūsī’s original formulations of the couple and his planetary models, presented 
in his Persian al-Risāla al-Muʿīniyya and its Supplement,3 was different from what 
was in the later Tadhkira and had at least one significant error. This allowed me to 
show that the Ṭūsī-couple and models contained in the work of the Byzantine scholar 
George Chioniades (d. ca. 1320 CE), entitled “The Schemata of the Stars,” were in 
fact from al-Risāla al-Muʿīniyya, not the Tadhkira. The evidence is presented in 
“New Light on Shams” and in “From Tūn to Toruń.” It is significant that Chioniades’s 
“Schemata” was available in the Vatican Library at the time Copernicus was in Rome 
around 1500 CE. To contextualize Chioniades, I also include a short encyclopedia 
article summarizing his life and contributions. Finally, in this section, “The Origins of 
the Ṭūsī-Couple Revisited” provides some recently discovered evidence that allows 
us to give a chronology of Ṭūsī’s discovery and evolving versions of his couples. This 
shows that Naṣīr al-Dīn first announced his new models in al-Risāla al-Muʿīniyya, 
but did not actually present them until almost ten years later in the Supplement to that 
work. Shortly after completing the Supplement, he would present an adaptation of his 
rectilinear version in the Recension (Taḥrīr) of Ptolemy’s Almagest. But it was only 
in writing the Tadhkira that he provided a corrected version of the rectilinear device 
and his newly developed curvilinear version. 

Though Ṭūsī’s influence is an important part of the Islam-Copernicus connection, a 
far more important role belongs to ʿAlāʾ al-Dīn al-Awsī, better known as Ibn al-Shāṭir 
(d. 777 H/1375-6 CE), the focus of the third section. Ibn al-Shāṭir’s work came to the 
attention of the scholarly world in the 1950s, with the publications by Victor Roberts, 
later in collaboration with his teacher E. S. Kennedy, that revealed a remarkable 
similarity of Ibn al-Shāṭir’s planetary models with those of Copernicus.4 Noel 

3	 For the critical edition, see Naṣīr al-Dīn Muḥammad al-Ṭūsī, Al-Risāla al-Muʿīniyya (al-Risāla al-Mughniya) and its Supplement, vol. 
1: edition by Sajjad Nikfahm-Khubravan and Fateme Savadi (Tehran: Miras-e Maktoob, 2020); vol. 2: English translation by F. Jamil 
Ragep, Fateme Savadi, and Sajjad Nikfahm-Khubravan, forthcoming. https://ismi.mpiwg-berlin.mpg.de/page/resources 

4	 See especially Edward S. Kennedy and Victor Roberts, “The Planetary Theory of Ibn al-Shāṭir,” Isis 50/3 (1959): 227-35.
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Swerdlow and Otto Neugebauer continued and supplemented the research of Roberts 
and Kennedy, with Swerdlow concluding that “the relation between the models is so 
close that independent invention by Copernicus is all but impossible.”5 Swerdlow had 
mainly emphasized the connections between the “first anomaly,” the part of the models 
dealing with the planets’ motions through the zodiac. Here both Ibn al-Shāṭir and 
Copernicus had used a double-epicycle model to resolve the irregular motion brought 
about by Ptolemy’s equant device. For the “second anomaly,” the one having to do with 
motion on Ptolemy’s epicycle that was connected with the planet’s motion with respect 
to the Sun, Swerdlow proposed that Copernicus had used Regiomontanus’s (d. 1476 
CE) models that transformed Ptolemy’s epicycles into eccentrics.6 In “Ibn al-Shāṭir and 
Copernicus: The Uppsala Notes Revisited,” I proposed a different interpretation, one 
in which Ibn al-Shāṭir’s models were more holistically connected to both the first and 
second anomalies in the Copernican models. Basing myself upon an important insight 
of my then student and present-day colleague Sajjad Nikfahm-Khubravan, I argued 
that there was a “heliocentric bias” in Ibn al-Shāṭir’s models that greatly facilitated the 
transition from a geocentric to a heliocentric cosmology. This was followed with a more 
technical article on the Mercury model (“Ibn al-Shāṭir and Copernicus on Mercury”), 
co-authored with Nikfahm-Khubravan. We maintained there that the mathematical 
equivalence of Copernicus’s most complex model in De revolutionibus with that of Ibn 
al-Shāṭir’s was decisive evidence for Copernicus’s dependence on his predecessor. But 
beyond this obvious point, we claimed that the rather different model in Copernicus’s 
earlier Commentariolus, though clearly still dependent on Ibn al-Shāṭir, indicated 
that Copernicus was striving for a different sort of cosmology at that earlier stage of 
his career. This was a kind of quasi-homocentrism, which allowed for epicycles but 
disallowed eccentrics. Unfortunately, this did not work very well, so eccentrics made 
a reappearance in De revolutionibus. Finally, this section includes a brief biography of 
Ibn al-Shāṭir (also written with Nikfahm-Khubravan) that contributes some additional 
information to what is known of this remarkable fourteenth-century Damascene.

In the final section are four articles that deal in varying degrees with other Islamic 
connections with Copernicus. The first, “ʿAlī Qushjī and Regiomontanus,” underscores 
the remarkable similarity of Regiomontanus’s transformations of epicyclic into 
eccentric models with a similar, earlier endeavor by ʿAlī Qushjī. This conversion 

5	 Noel Swerdlow, “Copernicus, Nicolaus (1473–1543),” in Encyclopedia of the Scientific Revolution from Copernicus to Newton, ed. W. 
Applebaum (New York and London, 2000), 165.

6	 For Swerdlow’s analysis, see his “The Derivation and First Draft of Copernicus’s Planetary Theory: A Translation of the Commentariolus 
with Commentary,” Proceedings of the American Philosophical Society 117 (1973): 423-512 and N. M. Swerdlow and O. Neugebauer, 
Mathematical Astronomy in Copernicus’s De revolutionibus, 2 parts (New York/Berlin: Springer, 1984), esp. 1: 41-54.
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has been held by Swerdlow and others to be crucial for the transformation from a 
geocentric to heliocentric cosmology, but I have come to believe that it is far less 
important than the central role played by Ibn al-Shāṭir’s models for both the first 
and second anomalies. In any event, the nearly identical figures accompanying ʿAlī 
Qushjī’s treatise and the printed version of Regiomontanus’s Epitome of the Almagest 
provide yet more evidence of the interchange of ideas between Islam and Europe 
during the fifteenth century. 

In “Ṭūsī and Copernicus: The Earth’s Motion in Context,” I discuss an interesting 
discourse in Islam, beginning with Ṭūsī, that dealt with the question of the Earth’s 
possible rotation. Although Ṭūsī accepted that the Earth was at rest at the center of 
the Universe, he did not think that the empirical proofs put forward by Ptolemy and 
others were valid. Instead, he proposed that a rotating Earth would not be sensed by 
an observer if the air and what was in it were also rotating. His conclusion was that 
the only proof was a natural philosophical one, based on the fact that the element 
earth naturally moved rectilinearly toward the center and therefore could not rotate. 
This position drew considerable attention and was disputed by, among others, his 
onetime student Quṭb al-Dīn al-Shīrāzī (d. 710 H/1311 CE). That Qushjī rejected both 
the empirical and natural philosophical proofs for the Earth’s stasis opened up the 
possibility for its motion. What connects this discourse to Copernicus is a passage in 
De revolutionibus that follows Ṭūsī’s wording quite closely, in particular an appeal to 
the daily motion of comets as an analogue to the possible rotational motion of objects 
in the air.

The article “Ibn al-Haytham and Eudoxus” points to an interesting use of homocentric 
modeling by Ibn al-Haytham (d. ca. 432 H/1040-41 CE) to provide physical orbs 
to achieve part of Ptolemy’s planetary motions in latitude. This is one of several 
instances in Islamic astronomy in which homocentric modeling, along the lines 
advocated by Eudoxus and Aristotle (both 4th c. BCE), gained some adherents among 
Islamic astronomers, the most well-known being al-Biṭrūjī. Needless to say, this is 
part of a complex story of homocentricity and quasi-homocentricity that should form 
part of the story of Copernican astronomy.

The final article in this section, “Al-Battānī, Cosmology, and the Early History of 
Trepidation in Islam,” concerns the complex and intriguing history of trepidation, an 
alternative to the monotonic precession of the equinoxes. It was often connected with 
the apparent decrease in the obliquity of the ecliptic. Although variable precession 
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was an incorrect theory from antiquity that was eventually abandoned by later Islamic 
astronomers, it gained a number of adherents in the early centuries of Islamic science. 
Regarding the connection to medieval and early modern European astronomers, it is 
noteworthy that several of them continued to believe in the theory despite long-term 
observations in the Islamic world that showed precession to be basically monotonic. 
Copernicus himself gave a model for trepidation in De revolutionibus (Bk. III, Chs. 
3-5) that was meant to account for both variable precession and the change in obliquity; 
remarkably, it was essentially the same as that suggested by Ṭūsī in the Tadhkira. 
Ṭūsī, though, was skeptical of the theory and only presented it “if the fact of these two 
motions [variable precession and the obliquity] and their variability is ascertained.”7

Again, let me thank the Turkish Academy of Sciences and in particular its President, 
Prof. Dr. Muzaffer Şeker, for their encouragement and support in republishing these 
articles. I would also like to thank my former student and current colleague, Dr. Hasan 
Umut, whose assistance in getting this book published has been invaluable.
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Islamic Encyclopedia], vol. 23 (Tehran: Markaz-i Dāʾirat al-Maʿārif-i Buzurg-i 
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General Works





COPERNICUS AND HIS ISLAMIC PREDECESSORS:
SOME HISTORICAL REMARKS

F. Jamil Ragep
McGill University

As a result of research over the past half century, there has been a growing recogni-
tion that a number of mathematical models used by Copernicus had originally been 
developed by Islamic astronomers. This has led to speculation about how Copernicus 
may have learned of these models and the role they played in the development of 
his revolutionary, heliocentric cosmology. Most discussion of this connection has 
thus far been confined to fairly technical issues related to these models; recently, 
however, it has been argued that the connections may go deeper, extending into the 
physics of a moving Earth and the way in which astronomy itself was conceived. The 
purpose of this article is to give an overview of these possible connections between 
Copernicus and his Islamic predecessors and to discuss some of their implications 
for Copernican studies.

THE MATHEMATICAL BACKGROUND

That Copernicus was acquainted with a number of his Islamic predecessors has 
been evident since 1543, when Copernicus in De revolutionibus explicitly cited five 
Islamic authors.1 The latest of these authors, al-Bitruji, flourished in Spain in the 
last part of the twelfth century, so Copernicus’s references end around 1200, which 
is the approximate terminus date for Islamic authors who were translated into Latin. 
Until recently, most historiography related to Copernicus has assumed that this was 
the end of the story, at least as far as Islamic influence goes. But since the 1950s, a 
series of discoveries has shaken this neatly constricted picture and caused a major 
re-evaluation of the relation of Copernicus (as well as other Renaissance astronomers) 
to later Islamic astronomy. 

The first modern acknowledgement of a connection between Copernicus and 
a later (i.e. post-1200) Islamic astronomer was made by J. L. E. Dreyer in 1906. 
In a footnote, Dreyer noted that the new device invented by Nasir al-Din al-Tusi 
(d. 1274) was also used by Copernicus in Book III, chap. 4 of De revolutionibus.2 
Typical for the time, Dreyer offered no further explanation or speculation; nor did 
anyone else until the discovery in the 1950s of a connection between another Islamic 
astronomer and Copernicus. E. S. Kennedy, who was a professor of mathematics 
at the American University of Beirut, happened by chance to notice some unusual 
(i.e. non-Ptolemaic) astronomical models while browsing through the Nihayat al-
sul of cAla’ al-Din Ibn al-Shatir, a Damascene astronomer of the fourteenth century 
who had been the time-keeper of the Umayyad Mosque. Upon showing these to his 
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friend and mentor, Otto Neugebauer of Brown University, Kennedy was amazed to 
learn that these models were ones that had been thought to have first appeared in the 
works of Nicholas Copernicus. This led to a series of articles by Kennedy and his 
students that discussed various aspects of these models by Ibn al-Shatir as well as 
by other late Islamic astronomers.3

The picture that emerged can be summarized as follows. Islamic authors from an 
early period were critical of Ptolemy’s methods, observations, and models.4 One par-
ticular irritant was the use of devices by Ptolemy that violated the accepted physical 
principles that had been adopted by most astronomers in the ancient and medieval 
periods. Later Islamic astronomers came to list sixteen of these violations: six having 
to do with having the reference point for uniform motion of an orb being different 
from the actual centre of the orb (often referred to as the “equant” problem); nine 
having to do with a variety of Ptolemaic devices meant to bring about latitudinal 
variation in the planets’ motions (i.e. deviation north or south of the ecliptic); and, 
finally, an irregular oscillation of the lunar epicycle due to the reference diameter 
being directed to a “prosneusis” point rather than the deferent centre of the epicycle.5 
The earliest systematic attempt in Islam to criticize Ptolemy’s methods and devices 
occurred in al-Shukuk cala Batlamyus (Doubts against Ptolemy) by Ibn al-Haytham 
(d. c. 1040), who was better known in Europe for his great work on optics. In addition 
to his blistering critique of Ptolemy, Ibn al-Haytham also wrote a treatise in which he 
attempted to deal with some of the problems of Ptolemy’s planetary latitude models.6 
A contemporary of Ibn al-Haytham, Abu cUbayd al-Juzjani, who was an associate of 
Abu cAli Ibn Sina (= Avicenna, d. 1037), also dealt with these issues and proposed 
a model to deal with the equant problem.7

These early attempts notwithstanding, the major thrust to provide alternative 
models occurred in the twelfth century and continued for several centuries thereafter. 
In Islamic Spain, there were a number of criticisms that questioned the very basis of 
Ptolemaic astronomy, in particular its use of eccentrics and epicycles, which culmi-
nated in an alternative cosmological system by al-Bitruji that used only orbs that were 
homocentric with the Earth.8 But though Bitruji’s work had important influences in 
Europe — indeed Copernicus mentions his view that Venus is above the Sun9  —  the 
Spanish “revolt” against Ptolemy should be seen as episodic rather than marking the 
beginning of a long-lived tradition of Islamic homocentric astronomy.

In the Islamic East the situation was otherwise. Beginning in the first half of the 
thirteenth century, a number of works appeared that proposed alternatives to Ptolemy’s 
planetary models. This was the start of an extremely fruitful period in the history of 
science in Islam in which a series of creative mathematical models were produced 
that dealt with the problems of Ptolemaic astronomy. Among the most important of 
these new models were those of Nasir al-Din al-Tusi (1201–74), Mu’ayyad al-Din 
al-cUrdi (d. c. 1266), Qutb al-Din al-Shirazi (1236–1311), cAla’ al-Din Ibn al-Shatir 
(d. c. 1375), and Shams al-Din al-Khafri (fl. 1525).10 In essence, these astronomers 
developed mathematical tools (such as the “Tusi couple” and the “cUrdi lemma”) 
that allowed connected circular motions to reproduce approximately the effects 
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brought about by devices such as Ptolemy’s equant.11 In the case of the rectilinear 
Tusi couple, two spheres, one half the size and internally tangent to the other, rotate 
in opposite directions with the smaller twice as fast as the larger. The result of these 
motions is that a given point on a diameter of the larger sphere will oscillate recti-
linearly. (There is an analogous curvilinear Tusi couple in which the oscillation is 
meant to occur on a great circle arc on the surface of a sphere.) What this allowed 
Tusi and his successors to do was to isolate the aspect of Ptolemy’s equant model 
that brought about a variation in distance between the epicycle centre and the Earth’s 
centre from the aspect that resulted in a variation in speed of the epicycle centre 
about the Earth. Such mathematical dexterity allowed these astronomers to present 
models that to a great extent restored uniform circular motion to the heavens while 
at the same time producing motions of the planets that were almost equivalent to 
those of Ptolemy.12

THE CONNECTION TO COPERNICUS

Noel Swerdlow and Otto Neugebauer, in discussing this Islamic tradition, famously 
asked: “What does all this have to do with Copernicus?” Their answer was: “Rather 
a lot.”13 In his commentary on Copernicus’s Commentariolus, Swerdlow made the 
case for this connection through a remarkable reconstruction of how Copernicus had 
arrived at the heliocentric system. According to Swerdlow, Copernicus, somehow 
aware of this Islamic tradition of non-Ptolemaic astronomy, began his work to reform 
astronomy under its influence. In particular Copernicus objected explicitly to Ptole-
my’s use of the equant, an objection that had been a staple of Islamic astronomy for 
some five centuries at that point (but which seems not to have been made by earlier 
European astronomers).14 Swerdlow then proposed that although Copernicus was 
able to use some of these models, in particular those of Ibn al-Shatir, to deal with 
the irregular motion brought about by the first anomaly (the motion of the epicycle 
centre on the deferent), it was the second anomaly (related to the motion of the 
planet on the epicycle) that remained problematic. For the outer planets this motion 
corresponds to the motion of the Earth around the Sun, so a transformation of this 
motion from an epicyclic to an eccentric would lead to a quasi-heliocentric system, 
whereby the planet goes around the Sun. Of course the Earth could still remain at 
rest while the Sun, with the planets going around it, could then go around the Earth. 
In other words, Copernicus’s transformations could have led to a Tychonic system. 
Swerdlow argued that this was not an option for Copernicus, since it led to the notori-
ous intersection of the spheres of the Sun and Mars, which simply was not possible 
in the solid-sphere astronomy to which Copernicus was committed. Thus Copernicus 
was compelled to opt for a heliocentric system with the Earth, as a planet, in motion 
around the Sun.15

In his reconstruction, Swerdlow assumed that Copernicus must have had access 
to the models of his Islamic predecessors. Because of the scarcity of concrete evidence 
for this assertion (i.e. translated texts in Latin, earlier European references to these 
models, or the like), Swerdlow was clearly swayed by the similarity of complex 
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geometrical models; independent discovery was simply not an option. As he stated 
with Neugebauer in 1984:

The planetary models for longitude in the Commentariolus are all based upon 
the models of Ibn ash-Shatir — although the arrangement for the inferior plan-
ets is incorrect — while those for the superior planets in De revolutionibus use 
the same arrangement as cUrdi’s (sic) and Shirazi’s model, and for the inferior 
planets the smaller epicycle is converted into an equivalent rotating eccentricity 
that constitutes a correct adaptation of Ibn ash-Shatir’s model. In both the Com-
mentariolus and De revolutionibus the lunar model is identical to Ibn ash-Shatir’s 
and finally in both works Copernicus makes it clear that he was addressing the 
same physical problems of Ptolemy’s models as his predecessors. It is obvious 
that with regard to these problems, his solutions were the same.   

The question therefore is not whether, but when, where, and in what form he 
learned of Maragha theory.16

This has recently been reinforced by Swerdlow:

How Copernicus learned of the models of his [Arabic] predecessors is not 
known — a transmission through Italy is the most likely path — but the relation 
between the models is so close that independent invention by Copernicus is all 
but impossible.17

Neugebauer and Swerdlow did have one bit of evidence that seemed to show a 
likely means of transmission between the Islamic world and Italy. This was a text 
contained in MS Vat. Gr. 211, in which one finds the Tusi couple (rectilinear ver-
sion) and Tusi’s lunar model. Apparently dating from about 1300, it is either a Greek 
translation or reworking of an Arabic treatise, made perhaps by the Byzantine scholar 
Gregory Chioniades.18 The fact that this manuscript found its way to the Vatican, 
perhaps in the fifteenth century, provides a possible means for the transmission of 
knowledge of Tusi’s models. It is also noteworthy that Tusi’s models seem to have 
been widely known by contemporaries of Copernicus; examples include Giovanni 
Battista Amico and Girolamo Fracastoro.19 

The historian of astronomy Willy Hartner also pointed to evidence for transmission 
from Islamic astronomers to Copernicus. Though he states that independent discovery 
of these models and devices by Copernicus was “possible”, “it seems more probable 
that the news of his Islamic predecessor’s model reached him in some way or other”. 
Here Hartner was speaking of the model of Ibn al-Shatir; he was more certain that 
another example “proves clearly” the borrowing by Copernicus of the Tusi couple 
inasmuch as the lettering in Copernicus’s diagram in De revolutionibus follows the 
standard Arabic lettering rather than what one might expect in Latin.20

HISTORIOGRAPHICAL REACTIONS

One would have expected that these historical discoveries, some of which are now a 
half-century old, would have caused a substantial reevaluation of the origins of the 
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“scientific revolution” or at the least an attempt to deal with the role of Islamic science 
in that revolution. The fact that this has not yet occurred to any significant degree 
may be traced to several factors. First, recent trends in the historiography of science 
have resulted in critiques of the very notion of a “scientific revolution”, which have 
tended to downplay the traditional preeminence of the Copernicus-Galileo-Newton 
narrative.21 But even those who still hold to some notion of a scientific revolution have 
tended to focus their attention on local contexts (usually European) for explanations 
and to look at the consequences rather than the origins of Copernicanism.22 Second, 
the increasing realization that Copernicus was rather conservative in his scientific 
outlook, holding on, for example, to the traditional orbs and their uniform, circular 
motions, has called his revolutionary status into question. So there seems to be an 
underlying assumption that the enormous complexity in De revolutionibus is more or 
less irrelevant for the truly important innovation, heliocentricism, which, according 
to this view, is all that really mattered for Kepler, Galileo, et al. 23 Thus the convo-
luted story of “Copernicus and the Arabs”, which is mostly about the complicated 
but supposedly irrelevant models, becomes more trouble than it is worth.24 Third, 
despite, but in part due to, the trend towards “political correctness”, there has been a 
tendency to essentialize different scientific traditions, sometimes because of a benign 
cultural relativism, sometimes for more invidious reasons. Thus the “essential” part 
of the scientific revolution, of which the de-centring of the Earth is fundamental, is 
seen as European.25 Finally, the simple fact of academic boundaries has played a role. 
Because historians of science specializing in Islamic civilization have tended to be 
marginalized, in part for disciplinary reasons, in part because of the arcane nature of 
many of their publications, it has been surprisingly difficult to initiate an on-going 
dialogue between medieval Latinists, Islamists, and early modernists.26

Although the larger history of science community seems so far to have resisted 
dealing with the implications of the Islamic connection to Copernicus, some historians 
of astronomy who do not specialize in Islamic science have been influenced by the 
discoveries of Kennedy and his colleagues. We have already discussed Neugebauer 
and Swerdlow. Jerzy Dobrzycki and Richard L. Kremer also explored possible con-
nections between Islamic astronomy and early modern European astronomy in their 
incisive article “Peurbach and Maragha astronomy”; they raised the distinct pos-
sibility that Peurbach may well have developed non-Ptolemaic models based upon 
Islamic sources that were similar (if not the same) as ones that would be used in the 
next generation by Copernicus. Given this earlier possibility of transmission, they 
came to an interesting conclusion: “We may be looking for a means of transmission 
both more fragmentary and widespread than a single treatise, and at least one of the 
Maragha sources must have been available to the Latin West before 1461, the year 
of Peurbach’s death.”27 But not all historians of early modern astronomy have been 
so willing to accept a connection, even in the face of numerous coincidences. I. N. 
Veselovsky claimed that it is more likely that Copernicus got the Tusi couple from 
a mathematically-related theorem in Proclus’s Commentary on the First Book of 
Euclid’s Elements.28 More recently, Mario di Bono has maintained that independent 
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rediscovery of the Islamic astronomical models by Copernicus and his contemporaries 
is at least as plausible as intercultural transmission. Somewhat surprisingly, he uses 
the number of similarities between Islamic and Copernican astronomy as evidence 
against transmission: “[If] derivation of Copernicus’s models from Arab sources … 
is the case, it becomes very difficult to explain how such a quantity of models and 
information, which Copernicus would derive from Arab sources, has left no trace 
— apart from Tusi’s device — in the works of the other Western astronomers of the 
time.”29

THE CONCEPTUAL BACKGROUND TO THE COPERNICAN REVOLUTION

Di Bono’s article serves to highlight what has been missing in the analysis of the 
connection between Islamic astronomy and Copernicus. The emphasis on the models 
alone obscures several crucial historiographical, conceptual, and physical issues that 
need to be considered when dealing with the Copernican transformations. Let us first 
look briefly at some of these historiographical issues. What seems to be overlooked 
by those who advocate a reinvention by Copernicus and/or his contemporaries of 
the mathematical models previously used by Islamic astronomers is the lack of an 
historical context for those models within European astronomy. At the least, one 
would expect to find some tradition of criticism of Ptolemy in Europe in which those 
models would make sense. But in fact this is not the case. Copernicus’s statement 
of his dissatisfaction with Ptolemaic astronomy, which is the ostensible reason he 
gives for his drastic cosmological change, had no precedent in Europe but did have 
a continuous five-hundred-year precedent in the Islamic world. Here is what he says 
in the introduction to the Commentariolus:

… these theories [put forth by Ptolemy and most others] were inadequate unless 
they also envisioned certain equant circles, on account of which it appeared that 
the planet never moves with uniform velocity either in its deferent sphere or with 
respect to its proper centre. Therefore a theory of this kind seemed neither perfect 
enough nor sufficiently in accordance with reason. 

Therefore, when I noticed these [difficulties], I often pondered whether perhaps 
a more reasonable model composed of circles could be found from which every 
apparent irregularity would follow while everything in itself moved uniformly, 
just as the principle of perfect motion requires.30

Since the Commentariolus is the initial work in which Copernicus presents his new 
cosmology, one would assume that it would be here, and not in the much later De 
revolutionibus, in which we should search for his original motivations.31 What do 
we learn from this passage? Copernicus puts himself squarely within the tradition of 
Islamic criticisms of Ptolemy’s violations of uniform, circular motions in the heavens. 
It is important to keep in mind that this tradition began in the Islamic world as early 
as the eleventh century and led to the series of alternative models outlined above. 
Furthermore this tradition lasted for some six centuries in which there was a very 
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vigorous discourse that led to various proposals, criticisms, and counter-proposals 
by an active group of astronomers from many regions of the Islamic world. Those 
who advocate parallel development would thus seem to be claiming that a centuries-
long tradition with no analogue whatsoever in Europe was recapitulated, somehow, 
in the life of one individual who not only paralleled the criticisms but also the same 
models and revised models in the course of some thirty years. Needless to say, such 
an approach is ahistorical in the extreme. 

Another point needs to be made here. Di Bono and others have pointed to the 
Paduan astronomers as a possible source for Copernicus’s inspiration. But an impor-
tant distinction needs to be made. The “return” to homocentric astronomy that was 
evidently advocated by the Paduans has its parallel and inspiration in the “Andalusian 
revolt” against Ptolemy in twelfth-century Spain. But this revolt, fomented by such 
figures as Ibn Bajja, Ibn Tufayl, Ibn Rushd (Averroes), and most importantly by al-
Bitruji, who advanced an alternative astronomical/cosmological system, needs to be 
clearly differentiated from the type of Islamic astronomy that most closely resembles 
that of Copernicus, i.e. the Eastern hay’a tradition of Ibn al-Haytham, Tusi, cUrdi, 
Shirazi, Ibn al-Shatir and others.32 What we know from the Andalusian revolt is that 
its extreme position against Ptolemy’s epicycles and eccentrics led to a failed project 
that had virtually no impact on the Eastern hay’a tradition. It would seem odd indeed 
that this Andalusian tradition, in the guise of Paduan astronomy, would have been a 
source for Copernicus’s alternative models in which epicycles and eccentrics play 
such a prominent role. It is also important to note that neither among the Paduans 
nor among European astronomers and natural philosophers before Copernicus is 
there a criticism of the equant or other Ptolemaic devices that lead to a violation of 
uniform, circular motion.33 One must be careful to distinguish a general criticism 
of Ptolemy’s eccentrics and epicycles (and an advocacy of homocentric astronomy) 
from the tradition of criticism of Ptolemy’s irregular motions that was initiated by 
Ibn al-Haytham, a tradition that clearly includes Copernicus.

Let us now turn to the conceptual issues involved with the Copernican revolution. 
In the traditional Aristotelian hierarchy of the sciences, the mathematical sciences 
(including astronomy) were dependent (or subalternate) to physics/natural philoso-
phy, which itself was subordinate to metaphysics. Obviously in order to overturn the 
Aristotelian doctrine of a stationary Earth, a doctrine for Aristotelians firmly based 
upon both natural philosophical and metaphysical principles, Copernicus would 
have had to conceive of a different type of physics. This physics would need to be, 
somehow, formulated within the discipline of astronomy itself and somehow inde-
pendent of Aristotelian natural philosophy. Luckily, he had a number of important 
precedents for this position.

The most authoritative of these precedents was Ptolemy himself. In the introduction 
to the Almagest, Ptolemy reverses the order of the sciences and places mathematics 
above natural philosophy and metaphysics (or “theology”), both of which, he claims, 
“should rather be called guesswork than knowledge”. He goes on to say “that only 
mathematics can provide sure and unshakeable knowledge to its devotees, provided 

71



10   Islamic Astronomy and Copernicus
   

one approaches it rigorously”.34 Though his position had the potential to free the 
astronomer from the natural philosopher, in actuality a kind of compromise emerged 
in which the astronomer and the natural philosopher were said to differ not on the 
actual set of doctrines but rather on the way to prove them. This is clearly laid out 
in a passage from Geminus preserved in Simplicius’s commentary on Aristotle’s 
physics:

Now in many cases the astronomer and the physicist will propose to prove the 
same point, e.g., that the Sun is of great size or that the Earth is spherical, but 
they will not proceed by the same road. The physicist will prove each fact by 
considerations of essence or substance, of force, of its being better that things 
should be as they are, or of coming into being and change; the astronomer will 
prove them by the properties of figures or magnitudes, or by the amount of 
movement and the time that is appropriate to it.35

Most Islamic astronomers followed this formulation, elaborating and clarifying it 
using the fact/reasoned fact (quia/propter quid) distinction of Aristotle’s Posterior 
analytics. Thus the astronomers were seen as giving the facts of various cosmological 
issues (e.g. that the Earth was spherical) using observational and mathematical tools 
as is done in Ptolemy’s Almagest, whereas the proof of the natural philosopher, such 
as in Aristotle’s De caelo, provided the reason or the “why” behind these facts.36

This relatively benign view of the relationship between the astronomer and the 
physicist came, over time, to be modified in significant ways. Most likely under the 
influence of Islamic theologians, who were fundamentally opposed to Aristotelian 
notions of natural cause, we can see subtle shifts in how physical principles were 
presented in the introductory parts of astronomical texts.37 Nasir al-Din al-Tusi, for 
example, presented the critical principle of the uniformity of celestial motion in such 
a way that it did not depend upon the ultimate cause. Thus the monoformity of falling 
bodies, and the uniformity of celestial motions, both of which moved “in a single 
way”, was what was important. It became irrelevant that the former was brought 
about by a “nature” while the latter was brought about by a “soul”.38

Slowly, then, we see an attempt in Islamic astronomy to provide a self-contained 
mathematical methodology that ran parallel to the methods of the natural philoso-
phers. But Tusi for one did not believe that this meant that the astronomer could be 
completely independent of the natural philosophers and metaphysicians, since there 
were certain principles that only the natural philosophers could provide the astrono-
mer. In fact this was generally the position of Islamic astronomers with the notable 
exception of cAli Qushji in the fifteenth century.

Qushji was the son of the falconer of Ulugh Beg (1394–1449), the Timurid prince 
who was a generous patron of the sciences and arts. Ulugh Beg was an active sup-
porter and participant in the magnificent Samarqand observatory, which was one of 
the greatest scientific institutions that had been established up to that time. As a boy, 
Qushji became his protégé and student and eventually occupied an important posi-
tion at the observatory. After the assassination of Ulugh Beg, Qushji was attached to 
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various courts in Iran but would end his career in Constantinople under the patronage 
of Mehmet II, who had conquered the city for the Ottomans.

Qushji held that the astronomer had no need for Aristotelian physics and in fact 
should establish his own physical principles independently of the natural philoso-
phers.39 This position had profound implications for one principle in particular, namely 
that the element earth had a principle of rectilinear inclination that precluded it from 
moving naturally with a circular motion.40 Tusi had maintained that there was no 
way for the astronomer, using mathematics and observation, to arrive at the “proof of 
the fact” that the Earth was either moving or at rest. This was contrary to Ptolemy’s 
position in the Almagest (I.7), namely that one could establish a static Earth through 
observation. After Tusi, we can trace a three-century discussion in which various 
authors argued whether he or Ptolemy was correct regarding the possibility of an 
observational proof of the Earth’s state of rest. Qushji, though, took a somewhat 
different approach. Starting with his view that the astronomer should not depend on 
the natural philosopher, but also rejecting Ptolemy’s view that an observational test 
was possible, Qushji made the remarkable claim that nothing false follows from the 
assumption of a rotating Earth.41

The connection with Copernicus, though, might seem tenuous at best. What makes 
this an arguable possibility is the remarkable coincidence between a passage in De 
revolutionibus (I.8) and one in Tusi’s Tadhkira (II.1[6]) in which Copernicus follows 
Tusi’s objection to Ptolemy’s “proofs” of the Earth’s immobility.42 This passage, 
which is quoted by numerous Islamic scholars after Tusi, including Qushji, formed 
the starting point for their discussion of the Earth’s possible motion. The closeness 
of the passage in Copernicus is one more bit of evidence that he seems to have been 
influenced not only by Islamic astronomical models but also by a conceptual revolu-
tion that was going on in Islamic astronomy. This conceptual revolution was opening 
up the possibility for an alternative “astronomical” physics that was independent of 
Aristotelian physics.

It is this point that has been missed up to now in seeking to understand the Islamic 
background to Copernicus. Clearly there is more to the Copernican revolution than 
some clever astronomical models that arose in the context of a criticism of Ptolemy. 
There also needed to be a new conceptualization of astronomy that could allow for an 
astronomically-based physics. But there is hardly anything like this in the European 
tradition before Copernicus.43 The fact that we can find a long, vigorous discussion 
in Islam of this issue intricately-tied to the question of the Earth’s movement should 
indicate that such a conceptual foundation was there for the borrowing. It will be 
argued, of course, that the mechanism for such borrowing has yet to be found. But 
again, in my opinion it is more important at this point in our knowledge to focus on 
the products rather than the mechanism of transmission. By doing so, we can get a 
clearer idea not only of the possible Islamic connection to Copernicus but also of 
the Copernican revolution itself.
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FURTHER THOUGHTS 

In the two years since I first developed the views expressed above, I have published 
a small treatise by cAli Qushji (d. 1474) that presents and proves a proposition that 
appears in Book XII of Regiomontanus’s Epitome of the Almagest, which was com-
pleted in 1463.44 The importance of this proposition can scarcely be overstated, since 
it allows one to transform all of Ptolemy’s planetary epicyclic models into eccentric 
models, which is generally accepted as crucial for the transformation from a geocentric 
to a heliocentric cosmology (see above). In that article, I argue that the possibility of a 
connection to Regiomontanus was strengthened by the lack of a context or justification 
in which Regiomontanus presented the proposition, which stands in stark contrast 
to the expansive manner in which Qushji discusses his own discovery (as a result 
of dealing with the Mercury model) and his attempt to explain why Ptolemy disal-
lowed such a transformation for the lower planets (Mercury and Venus). The striking 
similarity of Qushji’s figure that accompanies his text and that of Regiomontanus 
(Figure 1) adds to the possibility that this is a matter of transmission.

Given that Qushji was also willing to allow for the possibility of the Earth’s rota-
tion, the connections to Copernicus seem irresistible. Here I should emphasize the 
point that I made at the end of the original article above, namely that it is important 
to keep in mind that more is involved than a simple transmission of propositions or 
mathematical models. The sudden appearance in Europe at the end of the fifteenth 
century of what can be called “mathematical humanism” is what really demands an 
explanation. Obviously the interest in reforming and/or transforming the Ptolemaic 
system along the lines that had developed over many centuries in the hay’a tradition 
of eastern Islamic astronomy is one aspect of this. But clearly there is much more 
in Regiomontanus’s mathematical Programme than Ptolemaic astronomy (although 
it plays a major role in his thinking).45 It is here that I think more work needs to be 
done.

James Stephen Byrne has recently argued that “Regiomontanus’s vision of math-
ematics is that of a mathematician, rather than that of a historian, an educator, or a 
philosopher”. Rather than viewing Regiomontanus simply through a humanist lens, 
Byrne contends that one should see his “mathematical humanism” as “deeply rooted 
in the traditional university curriculum ... [but] [a]bove all, it is rooted in mathemati-
cal texts, both curricular and extra-curricular”.46 But as Michael Shank has pointed 
out: “With respect to the university, it is important to note first that from almost 
every point of view except intrinsic interest and later historiographical significance, 
the mathematical sciences at Vienna were on the margins. Institutionally, they had a 
place, but it was a minor one. They appear in the curriculum, but do not form its core. 
Statistically, they are distinctly in the minority; they are taught, read, and practiced 
by a minority.”47 But Shank goes on to argue that this does not make them any less 
important or significant. And clearly there must have been some pre-existing interest 
in the mathematical sciences in order for Cardinal Bessarion, the Greek prelate who 
“desperately wanted to preserve and breathe new life into the intellectual heritage of 
classical Greece”, to have inspired Peurbach and Regiomontanus to undertake what 
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amounted to a resuscitation of the Ptolemaic astronomical tradition in Europe.48

If we accept Shank’s position, and I believe we should, then we have moved at 
least part of the problem back to accounting for Bessarion’s “mathematical human-
ism”. This is a vexed question and raises the issue of the revival of interest in science 
during the Palaeologan period (1259–1453). It seems clear that Byzantine scholars 
were in contact with and were influenced by Islamic scientific developments.49 But 
how far did this influence extend? Since we have late Islamic models in Byzantine 
texts, and since we have other examples of Islamic texts in Byzantine form (the 
“Persian Tables”, for example50), the transmission of scientific objects is obvious. 
But what of the less tangible, more conceptual aspects I have spoken of above? Is 
it possible to transmit ideas, in particular ideas about how to do science? I have 
argued elsewhere that this is indeed possible.51 Following on A. I. Sabra’s notion 
of the “appropriation” of Greek science in Islam, I believe we can also speak of the 
transmission of a “moral economy” of science. (Here I borrow the terminology of 
L. J. Daston.) In this case, that transmission would have consisted of the notion that 
astronomy could, indeed should, be based upon a new set of physical principles that 
would be mathematically and empirically based, rather than upon Aristotelian natural 
philosophy. This, I contend, was also contained in the suitcase that Bessarion took 
with him to Vienna along with books and other objets de science.

Why do I not think this was not the result of the “predilections” of Peurbach 
and the young Regiomontanus, who somehow transmitted this to Copernicus in the 
next generation? For the same reason that I reject the parallelism argument. History 
takes time. In the Islamic world, the revolutionary rejection of Aristotelian physics 
in astronomy was something that took hundreds of years, dozens of scholars, and 
thousands of pages before it bore fruit in the person of cAli Qushji in Samarqand. 
The role of the physics of the Islamic theologians (mutakallims), the attack from 
various quarters on the Aristotelian claim of epistemic knowledge, the development 
of rhetorical tools to use in scientific argumentation, and the use of science to glorify 
God were all things that had counterparts in medieval Europe. What did not have a 
counterpart until the late fifteenth century was their interaction with the advanced 
astronomical tradition that had developed over many centuries within the Islamic 
world. In short, Regiomontanus, and his successors, reflect the mathematical human-
ism that had a brilliant but short life in Central Asia.52

In his stunning, but under-appreciated work on the origins of humanism in Islam, 
George Makdisi asks why we should bother about influence. His answer is that “by 
understanding where we came from in our intellectual culture we are apt to gain a 
better understanding of the civilization of the Christian West, not only that of clas-
sical Islam”. And he concludes with poignancy and prescience: “What is certain is 
that the Western Christian and Classical Islamic civilizations have strongly interacted 
in the Middle Ages and in Modern Times, and will continue to interact far into the 
future.”53 
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Islamic Reactions to Ptolemy’s Imprecisions 

F. Jamil Ragep 

Consider the following quotation from the author of the treatise Fī sanat al-shams 
(“On the Solar Year”), most likely written in Baghdad in the first part of the ninth 
century: 

Ptolemy, in persuading himself that the period of the solar year should be taken according 
to points on the ecliptic, also persuaded himself as to the observations themselves and did 
not in reality perform them; coming from his imagination, this was of the greatest harm 
for what was described for the calculations (Morelon 1987, p. 61; my translation). 

Or the following from Ibn al-Haytham in the eleventh century: 
When we investigated the books of the man famous for his attainment, the 
polymath in things mathematical, he who is [constantly] referred to in the 
true sciences, i.e. Ptolemy the Qlūdhī, we found in them much knowledge, 
and many things of great benefit and utility. However when we contested 
them and judged them critically (but seeking to treat him and his truths 
justly), we found that there were dubious places, rather distasteful words, 
and contradictory meanings; but these were small in comparison with the 
correct meanings he was on target with (Ibn al-Haytham 1971, p. 4). 

As the quotation from Ibn al-Haytham indicates, there was a real ambivalence 
towards Ptolemy among Islamic scientists. Widely respected, he was held by 
many of them to be a paragon of the mathematician whose truths transcended cul-
tural and religious difference. And yet it was also clear that there were many flaws 
in his various works, many of which were puzzling and led to a variety of doubts 
(shukūk [ἀπορίαι]). There has been a great deal written in recent years about the 
doubts regarding his models. (For a summary, see Sabra 1998). In this paper, I 
would like to turn to another aspect of the Islamic doubts toward Ptolemy and 
other Greek astronomers, namely observations. 
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by providing some examples. I will then try to characterize these differences. And 
lastly I will provide some reasons, admittedly speculative, that might account for 
these differences. 

Before continuing, let me explain a few terms that I will be using. By exact 
methods, I mean those mathematical and observational procedures that could 
potentially lead to accurate results. By accurate results, I mean those that are in 
accord with modern values. Now exact methods may or may not lead to accurate 
results, depending on the underlying mathematical and observational tools that are 
used. Results may be precise, i.e. to several digits, without being accurate, since 
many of these digits could be spurious, i.e. the result of carrying out calculations 
to a greater precision than supported by the original data or measurements. In or-
der to determine accuracy, one needs to engage in testing, i.e. checking received 
values by some means to determine their accord with newer observations or theo-
ries. I distinguish between confirmation of earlier parameters or results that leads 
to the acceptance of a received value, and the testing of parameters or results that 
may or may not lead to the revision of those values. (I’ll have more to say about 
this later.) 

Let us take as our first example the measurement of the size of the Earth. 

The Measurement of the Earth  

There is a heroic story that is well-known in the secondary literature about the 
early measurements of the Earth. Eratosthenes (3rd c. BCE), head of the library of 
Alexandria, is said by Cleomedes (1st c. BCE) to have measured the size of the 
Earth using a simple but effective means (see Fig. 1). This consisted of taking a 
known distance along a meridian in linear distance, finding its equivalent angular 
distance, and then setting up a proportion that would yield the meridional circum-
ference. Eratosthenes is said to have taken the linear distance between Alexandria 
and Syene (modern day Aswan) to be 5,000 stades, and he found the angular dis-
tance to be 1/50 of a complete circle. In addition, Eratosthenes evidently made the 
following assumptions: 

(a) Syene is on the tropic of Cancer, so there would be no shadow cast by the Sun 
at noon on the day of the summer solstice. 

(b) The Sun is at an infinite distance, so all its rays are parallel. 
(c) Alexandria and Syene are on the same meridian. 

For quite some time, I have had the impression that there is a significant differ-
ence between the types of observations one finds in antiquity and those one finds 
in the Islamic world, beginning sometime in the early ninth century during the 
ʿAbbāsid period. In what follows, I shall first try to give a sense of the differences 
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Fig. 1 Eratosthenes’ measurement of the Earth’s circumference 

Now all three assumptions are false; the effect of (b) is negligible, but (a) and 
(c) could cause some distortion. But of more effect on the accuracy of the final re-
sult are the “observations” of 5,000 stades and 1/50 of a circle. Now the roundness 
of these numbers, as well as the final result of 250,000 stades, immediately puts 
one (or should put one) on guard. These numbers are just too nice. But let’s give 
Eratosthenes the benefit of the doubt. The 5,000 stades could be rounded from 
some value close to 5,000 (and given the uncertainties involved this might be rea-
sonable), and the 1/50 is said to have been from an observation of a shadow cast in 
a bowl at the summer solstice. But several modern authors have cast doubt on 
whether these numbers were the result of actual observations. R.R. Newton, for 
example, proposed that the 1/50 was calculated based on latitude differences, or 
more likely on equinoctial noontime shadow differences, between Alexandria and 
Syene (Newton 1980, p. 384). And others have pointed out that a survey of linear 
distance between Alexandria and Syene would have been difficult to attain in an-
tiquity to any degree of accuracy and that Eratosthenes was probably relying on 
travelers’ reports (Dutka 1993, p. 62). 

Other reports we have of Greek values for the Earth’s circumference confirm 
the sense that we are dealing with “guesstimates” of various sorts (see Table 1). 
Besides the obviously rounded numbers, the post-Aristotle values are divisible by 
the standard Babylonian base 60. The one exception that proves the rule is the 
value that comes out of Eratosthenes’ reported observations, namely 250,000, 
which was changed to 252,000 (perhaps by Eratosthenes himself?) in order to be 
divisible by 60. 

123



46   Islamic Astronomy and Copernicus

Table 1 Greek values for the circumference of the Earth (cf. Dutka 1993) 

Authority Circumference (stades) 
Aristotle 400,000 
Anon. (mentioned by Archimedes and Cleomedes) 300,000 
Eratosthenes 250,000 
Eratosthenes 252,000 
Posidonius 240,000 
Posidonius 180,000 
Ptolemy 180,000 

 
A number of historians have attempted to save these numbers by coming up 

with truly ingenious arguments to show how accurate they are, based upon one or 
another of the many modern equivalents for an ancient stade. But as D. Engels has 
show in the case of Eratosthenes, such tortuous reconstructions have little to do 
with the historical record and much to do with the wishful thinking of modern his-
torians. In fact, Eratosthenes’s stade is most likely the Attic stade, which has an 
approximate length of 185 m (1/8 of a Roman mile), resulting in a circumference 
of 46,250 km, about 15% too great (Engels 1985). 

Despite the error in Eratosthenes’ result, I am reluctant to say that this is simply 
a case of a calculated value based upon latitudinal intervals expressed either in 
stades or shadow ratios. It seems to me possible, and given the amount of ancient 
testimony likely, that Eratosthenes and others “confirmed” the calculated values 
using observations of various sorts. Now one might ask how one can confirm an 
error that is within the limits of observation (cf. Rawlins 1982), but here the dis-
tinction between a confirmation and a test is important to keep in mind. Science 
students confirm results all the time, and it is the naïve teacher indeed who thinks 
that all the confirmations are the result of rigorous testing. Testing assumes that 
the observer wants to modify the received values, but I don’t think this is what 
was going on with the values listed in Table 1; rather, modifications are much 
more likely based upon changing equivalences of a stade. 

The conclusion that these values were unreliable is, interestingly enough, the 
judgment reached during the early ʿAbbāsid period. We have very good evidence 
that indicates that the Caliph al-Maʾmūn (r. 813–833) was not happy with 
Ptolemy’s 180,000-stade figure and wished to have it tested. (The following is a 
summary of a more extensive treatment in Ragep 1993, v. 2, pp. 501–510, which 
includes references; cf. King 2000 and Mercier 1992, both of whom evince a cer-
tain degree of skepticism regarding the Maʾmūnī measurement of the Earth. 
Though certain details are in doubt, in my opinion the amount of contemporane-
ous evidence makes a strong case for some sort of scientific observations ordered by 
Maʾmūn. Furthermore, there is no reason to distrust the evidence regarding 
Muḥammad ibn Mūsā, which is based upon his own words.) A text attributed to 
Muḥammad ibn Mūsā, one of the famous Banū Mūsā who was a protégé of Maʾmūn, 
as well as later sources, indicates that Muḥammad undertook a “confirmation” by 

simply taking the latitude difference of two Syrian cities, Raqqa and Palmyra 
(assumed on the same meridian) with Ptolemaic latitudes of 35°20′ and 34°, 
respectively. (The modern values are 35°58′ and 34°35′; in actuality, Raqqa is 
about 45′ east of Palmyra.) Since the Ptolemaic distance was given as 90 Roman 
miles, this did more or less confirm the Ptolemaic value of 66 ⅔ miles/meridian 
degree or 180,000 stades for the Earth’s circumference. (Note this is based upon a 
Roman mile of 7.5 Ptolemaic stades rather than the 8 Attic stades presumably used 
by Eratosthenes; see above.) What is interesting about this story is that Maʾmūn 
seems not to have been happy with this “confirmation,” perhaps because he was, 
correctly, not convinced that his astronomers knew the exact length of a Roman 
mile. Maʾmūn’s reaction, judging from a number of reports, was then to order a 
scientific expedition to find a meridian degree by means of a survey. A group was 
sent to the Plain of Sinjār in upper Mesopotamia. (The Sinjār area is located in the 
northwestern part of Iraq and constitutes approximately 2,250 km2 of a flat plain. 
Sinjār Mountain (1,460 m height) is the major geomorphological feature in the 
area.) The method we find described in Ibn Yūnus (d. 1009 CE) is instructive. 
Two groups, one going due north, the other due south, laid out survey lines using 
long ropes until the Sun’s altitude descended or ascended one degree. The two 
groups then came back to the starting point and compared notes and arrived at an 
average figure of 56 Arabian miles. (There are other reports giving slightly differ-
ent numbers.) Since we know that each of these miles was 4,000 cubits, and we 
also know that the cubit used at the time of Maʾmūn was approximately 49 cm, 
Carlo Nallino in the early 1900s concluded that the Maʾmūnī value for the circum-
ference of the Earth was within a few hundred kilometers (off by less than 1%). It 
is instructive to compare this with a recent attempt by the MIT physicist Phillip 
Morrison and his wife Phyllis Morrison to measure a meridian line along 
370 miles of US 183, running between Nebraska and Kansas. Taking two observa-
tions of Antares at the beginning and end of the trip and using the car’s odometer 
to measure distance, they came up with a circumference of 26,500 statute miles, 
off by about 6% (actual value 24,900) (as reported by Dutka 1993, p. 64). 

Here we can usefully distinguish, I believe, between the conventionalist at-
tempt by Muḥammad ibn Mūsā to confirm the Ptolemaic value with Maʾmūn’s 
demand to test that value. We can also say that Muḥammad was using an ap-
proach not all that different from what seems to have occurred rather frequently in 
antiquity—taking a received value and then using some observation or other 
means to confirm that it was approximately correct without seeking in any way to 
modify it. What seems new here is that a patron, in this case representing the state, 
is intervening to demand observational accuracy. While state patronage of science 
was certainly not unprecedented (one thinks of the Ptolemies and several Sasanian 
rulers not to mention Babylonian and Assyrian kings), this type of personal inter-
vention by Maʾmūn as reported in contemporary accounts does seem to mark a 
new departure (Langermann 1985). We will return to this below. 
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The Length of the Year and the Sun’s Motion  

The Ptolemaic length for the tropical year, as well as others reported from anti-
quity, were clearly at variance with what was observed in the ninth century; the 
problem was how to interpret these conflicting values. Ptolemy’s (and most likely 
Hipparchus’s) length for a tropical year (365d5h55m12s) is about 6 min per year too 
long, so over the 300 years between Ptolemy and Hipparchus there would have 
been almost a 30-h disparity between, say, a predicted vernal equinox by Hip-
parchus for Ptolemy’s time and an actual observation made by Ptolemy himself. 
And indeed Ptolemy’s reports of the times of equinoxes and summer solstices are 
about a day later than they should have been, which is one of the bases for saying 
that he faked his observations in order to keep Hipparchus’s value. By the time we 
reach the ninth century, this discrepancy would have reached well over 4 days! Of 
course, Maʾmūn’s astronomers and Muḥammad ibn Jābir al-Battānī (d. 929 CE) 
had a longer baseline to work from than did Ptolemy, so it would be surprising, 
not to say shocking, if they hadn’t modified Ptolemy’s length for the tropical year. 
But let us look at this another way. Ptolemy decided not to tamper with the year he 
had inherited from Hipparchus, despite the fact that there would have been a dis-
crepancy of more than a day. The Islamic astronomers of the ninth century had, in 
some ways, a more difficult problem to confront. How were they to understand the 
values they had inherited from the Ancients? Were they simply better observers 
than their predecessors or were there actual changes that had occurred in the inter-
vening years in the motion of the Sun and, perhaps, in that of the stars as well that 
might account for the observed variations? 

Thābit ibn Qurra (d. 901 CE) wrote his friend and collaborator Isḥāq ibn 
Ḥunayn asking him if he knew of a solar observation between the time of Ptolemy 
and Maʾmūn. (See Ragep 1996 for details on this (esp. pp. 282–283) and on what 
follows in this section.) There are several things at work here. Presumably, he 
wanted to check how well Ptolemy’s tables would predict this intermediate posi-
tion of the Sun, which might indicate whether changes in the Sun’s motion and/or 
parameters had occurred in the years since Ptolemy. But I suspect he also wanted 
to ascertain whether this new observation might give a clue regarding the variation 
in year-lengths, which might then be coordinated with the varying precessional 
rates reported by Ptolemy and Maʾmūn’s astronomers (1°/100 years for the former, 
1°/66 years for the latter). Briefly, the reported differences in year-lengths could 
be the result of a speeding up of the rate of precession, here interpreted to mean a 
variable speed of the eighth orb containing the fixed stars that would be transmit-
ted to the solar orbs, causing the Sun to reach the vernal equinox sooner than it 
would otherwise and thus resulting in a variation in the tropical year (see Fig. 2). 
Given this possibility, Battānī in his Zīj (astronomical handbook) entertains 
the idea that variable precession (whether or not connected with an oscillatory  
 

 
Fig. 2 A continuous speeding up (by trepidation or some other means) of the motion of the 
Eighth/Fixed Star Orb is here transmitted to the Sun’s orbs, causing the Sun to reach the fixed 
vernal equinox sooner than it would with a simple monotonic precession. Battānī claims this might 
explain the differences in year-lengths reported by the ancients and early Islamic astronomers 

 
trepidation motion) could explain the observations. Here we may turn to Tables 2 
and 3 for an indication of what Battānī had in mind. Table 2 lists the tropical year 
lengths (and corresponding solar speeds) from the ancients and his own observa-
tions. (Note the odd value for Hipparchus, which is at variance with the normal  
 
 
Table 2 Year-lengths and solar motion as reported by Battānī 

 Years since Nabonassar 
(Julian year) 

Length of tropical year 
in days 

Motion of Sun per 
Egyptian year 

Babylonians 0 (–746) 365 1/4 + 1/120 
(=365;15,30) 

359°44′43″ 

Hipparchus 600 (–146) 365 1/4 (=365;15) 359°45′13″ 
Ptolemy 885 (+139) 365 1/4 – 1/300 

(=365;14,48) 
359°45′25″ 

Battānī 1,628 (+882) 365 1/4 – (3 2/5)/360 
(=365;14,26) 

359°45′46″ 
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reading from the Almagest; Battānī, who elsewhere indicates that Ptolemy used 
the same year length as Hipparchus, may here be fudging the figures to indicate a 
steadily decreasing year-length.) Table 3 represents my reconstruction of the ef-
fect of variable precession, following Battānī’s suggestion and using his year-
length and reported precessional difference between him and Ptolemy to calculate 
the earlier values. Note the close relationship between the predicted year-lengths    

Despite noting this correlation between an increasing rate of precession and an 
increased speed of the Sun (and thus a decreasing length of the tropical year), Bat-
tānī indicates his dilemma and that of the first generations of Islamic astronomers: 
how could he know whether Ptolemy’s values were correct or whether Ptolemy 
was simply a bad observer and/or whether he was using an instrument that had 
been miscalibrated or had warped over time. So Battānī must leave the matter as 
undecided, with the hope that what he calls “true reality” will be attained over 
time. By the thirteenth century, most eastern Islamic astronomers, with several 
hundred years of reliable data behind them, were able to conclude that Ptolemy’s 
year-length was bogus and that variable precession to account for the ancient val-
ues was unnecessary (Ragep 1993, v. 2, p. 396). 

 
Table 3 Effect of variable precession on year-lengths (reconstructed according to the suggestion 
by Battānī, indicating the correlation between a shorter tropical year and an increasing rate of 
precession) 

 Precession 
1°/x yearsa 

Precession y 
seconds/yearb 

Tropical year in 
daysb 

Motion of Sun per 
Egyptian yearb 

Babylonians 1°/261 years 14″/year 365;15,8 
(365;15,22=sidereal 
year) 

359°45′5″ 

Hipparchus 1°/125 years 29″/year 365;14,53 359°45′20″ 
Ptolemy 1°/100 years 36″/year 365;14,45 359°45′27½″ 
Battānī 1°/66 years 54½″/year 365;14,26 359°45′46″ 
aRounded to the nearest year. 
bIn general, rounded to the nearest second. 

The Obliquity of the Ecliptic  

A third example concerns Ptolemy’s value for the ecliptic, 23°51′20″, which has 
always been a bit mysterious inasmuch as it is off by almost 11 min. In a recent ar-
ticle, Alexander Jones provides us with a plausible and compelling argument for 
the origins of this number as well as another indication of Ptolemy’s observa-
tional procedures (Jones 2002b). Jones shows that with a simple calculation 
one can get this result, or one very close to it, from a rounded value for the lati-
tude of Alexandria of 31° (based upon an equinoctial shadow ratio of 3:5), the 
5,000-stade distance of Alexandria to Syene (presumed on the Tropic of Cancer), 

in Table 3 and the reported ones in Table 2. 

and a circumference of the Earth of 252,000 stades. The ratio of the arc between 
the tropics, i.e. 47°42′40″, and 360° then translates by continued fractions into the 
enigmatic ratio 11/83 that is given by Ptolemy. Again we see the curious way in 
which Ptolemy has taken a Hellenistic value (probably from Eratosthenes) with 
evidently little attempt to verify it or its underlying parameters. (It is worth noting 
that Ptolemy’s own latitude value for his hometown of Alexandria (30°58′), 
apparently taken from Eratosthenes’ rather crude methods of equinoctial shadow 
ratios, is off by a quarter degree.) 

Moving into the ninth century, we again have a familiar tale. Maʾmūn’s astrono-
mers arrived at a figure of 23°35′, which is accurate to about half a minute. But 
again there was confusion: was their value the correct one, allowing them to safely 
discard Ptolemy’s, or had the obliquity actually been changing? In point of fact, 
the obliquity had been changing, but not so drastically as implied by Ptolemy’s 
figure. There are reports of early attempts to deal with this by postulating an addi-
tional orb that would eventually lead to the obliteration of the obliquity entirely, 
leading to catastrophe in the opinions of some because of the subsequent lack of 
seasons. By the tenth century, there began to appear a number of creative attempts 
to deal both with a changing obliquity and a changing rate of precession, in part, 
no doubt, because early models meant to deal with a changing obliquity probably 
were seen (correctly) as interfering with the precessional rate (Ragep 1993, v. 2, 
pp. 396–408). While these attempts to provide models that would explain both the 
ancient and Islamic values for the obliquity were progressing apace, there were 
quite a few new measurements of the obliquity as we can see from Abū al-Rayḥān 
al-Bīrūnī’s (d. ca. 1050) reports presented in Table 4 (al-Bīrūnī 1954–1956, v. 1, 
pp. 361–368). Note that most of these values are accurate to within a minute. 
(Bīrūnī himself notes that the two outliers, Abū al-Faḍl ibn al-ʿAmīd and Khujandī, 
were due to instrumental error.) 

Bīrūnī describes the ecliptic ring needed to make the observations and remarks 
that it needs to be large enough in order to inscribe divisions in minutes. We also 
have a report from Ibn Sīnā (Avicenna; d. 1037), who gives a much less detailed 
account of earlier work in the appendix to his own Almagest that is part of his 
monumental work, al-Shifāʾ. There he merely reports that an observation of 23°34′ 
had been made after Maʾmūn’s time. But then Ibn Sīnā gives his own observation 
to the nearest half minute, namely 23°33½′. This is a remarkably good value 
inasmuch as the estimate using modern tools gives 23°33′53″ for 1030. We have 
another report by Ibn Sīnā’s long-term collaborator, ʿAbd al-Wāḥid al-Jūzjānī, 
who, writing after Ibn Sīnā’s death, tells us that in Isfahan he obtained a value of 
23°33′40″, which for 1040 would have been correct to within 8 or 9 s (al-Jūzjānī, 
Khilāṣ kayfiyyat tarkīb al-aflāk, Mashhad MS Āstān-i Quds 392 (=Mashhad 
5593), p. 96). How they obtained such astonishing accuracy is not entirely clear, 
since they have not left us with detailed observational notes. We do, though, know 
that Ibn Sīnā was very interested in observations and invented an innovative 
observing device of some sophistication (Wiedemann and Juynboll 1927). It is 
also worth mentioning here that Ibn Sīnā claimed to have observed a Venus transit 
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by Battānī, indicating the correlation between a shorter tropical year and an increasing rate of 
precession) 

 Precession 
1°/x yearsa 

Precession y 
seconds/yearb 

Tropical year in 
daysb 

Motion of Sun per 
Egyptian yearb 

Babylonians 1°/261 years 14″/year 365;15,8 
(365;15,22=sidereal 
year) 

359°45′5″ 

Hipparchus 1°/125 years 29″/year 365;14,53 359°45′20″ 
Ptolemy 1°/100 years 36″/year 365;14,45 359°45′27½″ 
Battānī 1°/66 years 54½″/year 365;14,26 359°45′46″ 
aRounded to the nearest year. 
bIn general, rounded to the nearest second. 

The Obliquity of the Ecliptic  

A third example concerns Ptolemy’s value for the ecliptic, 23°51′20″, which has 
always been a bit mysterious inasmuch as it is off by almost 11 min. In a recent ar-
ticle, Alexander Jones provides us with a plausible and compelling argument for 
the origins of this number as well as another indication of Ptolemy’s observa-
tional procedures (Jones 2002b). Jones shows that with a simple calculation 
one can get this result, or one very close to it, from a rounded value for the lati-
tude of Alexandria of 31° (based upon an equinoctial shadow ratio of 3:5), the 
5,000-stade distance of Alexandria to Syene (presumed on the Tropic of Cancer), 

in Table 3 and the reported ones in Table 2. 

and a circumference of the Earth of 252,000 stades. The ratio of the arc between 
the tropics, i.e. 47°42′40″, and 360° then translates by continued fractions into the 
enigmatic ratio 11/83 that is given by Ptolemy. Again we see the curious way in 
which Ptolemy has taken a Hellenistic value (probably from Eratosthenes) with 
evidently little attempt to verify it or its underlying parameters. (It is worth noting 
that Ptolemy’s own latitude value for his hometown of Alexandria (30°58′), 
apparently taken from Eratosthenes’ rather crude methods of equinoctial shadow 
ratios, is off by a quarter degree.) 

Moving into the ninth century, we again have a familiar tale. Maʾmūn’s astrono-
mers arrived at a figure of 23°35′, which is accurate to about half a minute. But 
again there was confusion: was their value the correct one, allowing them to safely 
discard Ptolemy’s, or had the obliquity actually been changing? In point of fact, 
the obliquity had been changing, but not so drastically as implied by Ptolemy’s 
figure. There are reports of early attempts to deal with this by postulating an addi-
tional orb that would eventually lead to the obliteration of the obliquity entirely, 
leading to catastrophe in the opinions of some because of the subsequent lack of 
seasons. By the tenth century, there began to appear a number of creative attempts 
to deal both with a changing obliquity and a changing rate of precession, in part, 
no doubt, because early models meant to deal with a changing obliquity probably 
were seen (correctly) as interfering with the precessional rate (Ragep 1993, v. 2, 
pp. 396–408). While these attempts to provide models that would explain both the 
ancient and Islamic values for the obliquity were progressing apace, there were 
quite a few new measurements of the obliquity as we can see from Abū al-Rayḥān 
al-Bīrūnī’s (d. ca. 1050) reports presented in Table 4 (al-Bīrūnī 1954–1956, v. 1, 
pp. 361–368). Note that most of these values are accurate to within a minute. 
(Bīrūnī himself notes that the two outliers, Abū al-Faḍl ibn al-ʿAmīd and Khujandī, 
were due to instrumental error.) 

Bīrūnī describes the ecliptic ring needed to make the observations and remarks 
that it needs to be large enough in order to inscribe divisions in minutes. We also 
have a report from Ibn Sīnā (Avicenna; d. 1037), who gives a much less detailed 
account of earlier work in the appendix to his own Almagest that is part of his 
monumental work, al-Shifāʾ. There he merely reports that an observation of 23°34′ 
had been made after Maʾmūn’s time. But then Ibn Sīnā gives his own observation 
to the nearest half minute, namely 23°33½′. This is a remarkably good value 
inasmuch as the estimate using modern tools gives 23°33′53″ for 1030. We have 
another report by Ibn Sīnā’s long-term collaborator, ʿAbd al-Wāḥid al-Jūzjānī, 
who, writing after Ibn Sīnā’s death, tells us that in Isfahan he obtained a value of 
23°33′40″, which for 1040 would have been correct to within 8 or 9 s (al-Jūzjānī, 
Khilāṣ kayfiyyat tarkīb al-aflāk, Mashhad MS Āstān-i Quds 392 (=Mashhad 
5593), p. 96). How they obtained such astonishing accuracy is not entirely clear, 
since they have not left us with detailed observational notes. We do, though, know 
that Ibn Sīnā was very interested in observations and invented an innovative 
observing device of some sophistication (Wiedemann and Juynboll 1927). It is 
also worth mentioning here that Ibn Sīnā claimed to have observed a Venus transit 
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and also found the longitude distance between Jurjān and Baghdad to be 9°20′ 
[modern: 10°3′; traditional: 8°] (Ragep and Ragep 2004, p. 10). Although Bīrūnī 
did not think much of Ibn Sīnā’s astronomical abilities, it is interesting that Bīrūnī 
basically ended up “confirming” the Maʾmūnī observations, whereas Ibn Sīnā and 
his circle seem to have embarked upon a serious observing program to test, and 
modify, previous results. Whether the remarkably accurate values they came up 
with are a matter of accident or due to innovative observational techniques remains a 
matter of conjecture. (It is worth noting that although the normal human visual 
acuity is limited to 1 min of arc, it is possible under certain circumstances involv-
ing the observation of a moving object to become hyperacute, with the capability 
to distinguish even 5 s of arc (Buchwald 2006, pp. 620–621)). 

 
Table 4 Obliquity reports from Bīrūnī’s al-Qānūn al-Masʿūdī 

Observer Obliquity value Modern estimate 

Euclid 24° 23°44′ (for –300) 

Eratosthenes/Hipparchus 23°51′20″ 23°43.5′ (–250)/23°43′ (–150) 

Ptolemy 23°51′20″ 23°40.5′ (140) 

Indian Group 24° 23°38′ (500) 

Yaḥyā b. Abī Manṣūr 23°33′ 23°35′25″ (830) 

Sanad ibn ʿAlī 
23°34′ (23°33′52″ or 
maybe 23°33′57″ or 
23°34′27″) 

23°35′25″ (830) 

Damascus tables 23°34′51″ 23°35′25″ (830) 

Banū Mūsā in Sāmarrā’ 23°34½′ 23°35′25″ (830) 

Banū Mūsā in Baghdād 23°35′ 23°35′25″ (830) 

Manṣūr b. Talḥa/Muḥammad b. ʿAlī al-
Makkī 23°34′ 23°35′16″ (850) 

Sulaymān b. ʿAṣma with  
parallax adj. 23°33′42″ 23°35′5″ (875) 

Sulaymān b ʿAṣma without  
parallax 23°34′40″ 23°35′5″ (875) 

Battānī/Ṣūfī/Būzjānī/Ṣaghānī 23°35′ 23°34′53″ (900) 

Abū al-Faḍl ibn al-ʿAmīd 23°40′ 23°34′30″ (950) 

Khujandī 23°32′21″ 23°34′19″ (970) 

Bīrūnī 23°35′ 23°33′58″ (1020) 

 

Confirming vs. Testing  

Let us look a bit more closely at the distinction I am trying to make between con-
firming and testing. (For the following, I am much indebted to Sabra 1968.) One 
often finds derived forms of the verb iʿtabara to indicate something like testing in 
the sense of checking whether a received value or parameter is correct; this is what 
Bīrūnī uses when saying that he wishes to test his predecessors’ values for the 
obliquity. We also find another word, imtiḥān, which is used in the names of some 
zījes such as the Mumtaḥan Zīj of the early ʿAbbāsid astronomer Yaḥya ibn Abī 
Manṣūr, and also in works that are meant to weed out incompetents, such as al-
Qabīṣī’s (10th c.) Risāla fī imtiḥān al-munajimīn (treatise on testing the astrolo-
gers). Now Ptolemy, of course, also uses the idea of testing in various places in the 
Almagest. For example, in Almagest VII.1 he discusses the question of whether all 
stars or only those along the zodiac participate in the precessional motion. He pro-
poses testing this by comparing his stellar observations with those of Hipparchus. 
Now the word used for comparison is σύγκρισις and for test πεῖρα. When the Al-
magest was first translated into Arabic by al-Ḥajjāj ibn Maṭar (early ninth cen-
tury), he used iʿtibār for σύγκρισις and tajriba for πεῖρα. Later, in the second half 
of the ninth century, Isḥāq b. Ḥunayn would translate σύγκρισις as muqāyasa and 
πεῖρα as al-miḥna wa-ʾl-iʿtibār thus using two words for one. Since Isḥāq some-
times uses iʿtibār to translate σύγκρισις, A.I. Sabra has suggested that he may 
well have been trying to capture the idea of testing values over a longer interval by 
using the two words together. There are many examples in Islamic astronomy of 
the use of the conjoined al-miḥna wa-ʾl-iʿtibār or of one or the other alone to indi-
cate testing. And Sabra has argued that iʿtibār from an astronomical context was 
used by Ibn al-Haytham for his idea of testing optical theories in his Kitāb al-
manāẓir. (Note that the Latin translator of this work used experimentum for 
iʿtibār.) 

Let me suggest that something more has been added in the translation process. 
When Isḥāq rendered πεῖρα as al-miḥna wa-ʾl-iʿtibār, he may well have meant to 
convey a stronger form of testing, one that was not simply a confirmation. Indeed, 
the word miḥna had attained a certain notoriety in the ninth century, since it was 
the inquisitory procedure used during the reign of the Caliph al-Maʾmūn to test 
adherence to the imposed state dogma of the createdness of the Qurʾān. Isḥāq was 
not translating in a vacuum. He was certainly aware that the author of Fī sanat al-
shams believed that Ptolemy’s πεῖρα for the solar year was suspect (see above). 
And his collaborator Thābit ibn Qurra was, as we have seen, suspicious as well. 
Thus this linguistic turn of phrase could well have reflected what had already hap-
pened in the first half of the ninth century, a felt need to critically test Ptolemy’s 
parameters. 

But what was the basis of this “need”? Given the many examples we have in 
Greek astronomy of confirmation rather than testing, I think we can safely say that 
there is nothing natural about testing with the intention to modify what has been 
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matter of conjecture. (It is worth noting that although the normal human visual 
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cate testing. And Sabra has argued that iʿtibār from an astronomical context was 
used by Ibn al-Haytham for his idea of testing optical theories in his Kitāb al-
manāẓir. (Note that the Latin translator of this work used experimentum for 
iʿtibār.) 

Let me suggest that something more has been added in the translation process. 
When Isḥāq rendered πεῖρα as al-miḥna wa-ʾl-iʿtibār, he may well have meant to 
convey a stronger form of testing, one that was not simply a confirmation. Indeed, 
the word miḥna had attained a certain notoriety in the ninth century, since it was 
the inquisitory procedure used during the reign of the Caliph al-Maʾmūn to test 
adherence to the imposed state dogma of the createdness of the Qurʾān. Isḥāq was 
not translating in a vacuum. He was certainly aware that the author of Fī sanat al-
shams believed that Ptolemy’s πεῖρα for the solar year was suspect (see above). 
And his collaborator Thābit ibn Qurra was, as we have seen, suspicious as well. 
Thus this linguistic turn of phrase could well have reflected what had already hap-
pened in the first half of the ninth century, a felt need to critically test Ptolemy’s 
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But what was the basis of this “need”? Given the many examples we have in 
Greek astronomy of confirmation rather than testing, I think we can safely say that 
there is nothing natural about testing with the intention to modify what has been 
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received. Thomas Kuhn long ago made a persuasive case for the normalness of 
working within the paradigms of normal science, and though Kuhn did not neces-
sarily have the safeguarding of parameters in mind, one can certainly understand 
the reluctance to change established values, especially something as entrenched as 
the length of the year. What seems to me in need of explanation are the many ex-
amples in early Islamic astronomy that point to a process not of confirming but of 
critical testing, with an intention and methodology that could result in revisions, 
sometimes drastic, to the received and heretofore accepted values. 

Let us once again look at the case of measuring the Earth. Recall that 
Muḥammad ibn Mūsā seems to have followed the tried and true method of con-
firming earlier values in the way he went about using Ptolemy’s Geography to 
show that Ptolemy’s value was correct. But note the intervention of Maʾmūn, who 
exhibited a healthy skepticism and called for a new, indeed revolutionary ap-
proach to the problem—he insisted upon each value being independently derived 
using reproducible methods that resulted in testable values. And from a modern 
perspective, the results are very good indeed. 

Now the question arises: what could possibly have motivated Maʾmūn? Of 
course in the case of the size of the Earth, the obvious answer might be that he 
wanted to be able to have a basis for making maps of his vast empire, which was 
growing all the time. But to me this practical argument, though appealing, lacks a 
certain sufficiency. Didn’t any ruler before Maʾmūn want a good value for the size 
of the Earth, going back to the Ptolemies and continuing through to the Romans, 
the Persians and many others? And this does not serve to explain the reports that 
show Maʾmūn riding his astronomers to produce better results on a whole range of 
observations (Langermann 1985). My own preference would be to see this as a 
kind of cultural transformation, one of many, that resulted from the appropriation 
of Greek science into Islam. Part of this transformation involved a much greater 
number of people involved in the enterprise, as is evidenced by Bīrūnī’s list of ob-
servations of the obliquity. One can well sympathize with Ptolemy, who after all 
was a pioneer in many ways without a huge body of good observations at his dis-
posal. But I think he also inherited an ambivalence about the phenomena that 
might well have stymied an excessive demand for accuracy. Though exactly what 
Ptolemy’s philosophical and metaphysical stances may have been regarding ulti-
mate reality is unclear, the Platonist strand at the time was strong, and Ptolemy 
may well have had to contend with attitudes such as we find in Proclus 
(4th c. CE): 

The great Plato, my friend, expects the true philosopher at least to say goodbye to the 
senses and the whole of wandering substance and to transfer astronomy above the heavens 
and to study there slowness-itself and speed-itself in true number. But you seem to me to 
lead us down from those contemplations to these periods in the heavens and to the 
observations of those clever at astronomy and to the hypotheses they devised from these, 
[hypotheses] which Aristarchuses and Hipparchuses and Ptolemies and such-like people 
are used to babbling about. For you desire indeed to hear also the doctrines of these men, 

in your eagerness to leave, so far as possible, nothing uninvestigated of what has been 
discovered by the ancients in the inquiry into the universe. (Proclus, Hypotyposis; 
translation by Lloyd 1978, p. 207, who also provides the Greek text.) 

What would the early Muslims have made of all this? I think, and here I must 
speculate, that they would have been profoundly puzzled. The religion of Islam 
reemphasized the concept of monotheism (tawḥīd) and the nobility of the created 
world. Thus in theory a Muslim so inclined could (some would say should) try to 
understand that world and its Maker’s intentions. For a Platonist, this is a fool’s 
errand, since what we experience through our senses is definitely not the Real. 
Furthermore Islamic law by its very nature emphasized the here and now to a re-
markable extent despite the strong Islamic belief in the afterlife. How might these 
tendencies have influenced the course of Islamic science? In at least three ways. 
On the one hand, the earliest Islamic theological writings indicate an extensive 
interest in the material world and the type of world that would be compatible with 
God’s will and intentions (Dhanani 1994). Another way in which interest in the 
mundane world could have been encouraged was in the demand for evidence 
brought by Islamic jurisprudence (uṣūl al-fiqh) and by the requirements needed to 
establish correct historical reconstructions to divine the Prophet’s actual sayings 
and deeds (the ḥadīth). The third is the effect these religious aspects had on Helle-
nistic philosophy and philosophers in Islam. Though they were arch rivals, the 
mutakallims (theologians) and falāsifa (Hellenized philosophers) grudgingly 
acknowledged the presence of one another and reacted to each other’s doctrines. 
One of the ways that this manifested itself was in the striking transformation of 
what we can call the philosophy of science of Islamic philosophers. It has been 
customary to refer to such people, such as al-Kindī, al-Fārābī and Ibn Sīnā 
(Avicenna), as neo-Platonists. But these are very odd neo-Platonists. As should be 
clear from Ibn Sīnā, he had more than a passing interest in the phenomenal world 
held in such low esteem by the neo-Platonists of late antiquity. And even when 
those neo-Platonists wrote on astronomy, as Proclus did in his Hypotyposis, we 
can not help but notice his skepticism (as above), something one rarely finds in the 
philosophers of Islam. The insistence by Islamic philosophers and astronomers on 
the importance of empirical studies, manifested, for example, in Ibn Sīnā’s strik-
ing observational program and in Fārābī’s studies of contemporary musical prac-
tice, also bespeak a shift from late antiquity. 

Could this shift in attitude account for Islamic astronomical exactitude? Here 
again we can only speculate since it is difficult to establish the relationship be-
tween ideological tendencies and actual practice. And we need to keep in mind 
that critical testing was episodic not universal in Islamic astronomy. Even Bīrūnī 
would seem to have succumbed to bouts of “confirmationism.” And in the thir-
teenth century it is striking that no less a personage than Quṭb al-Dīn al-Shīrāzī 
was skeptical about the Maʾmūnī value for the Earth’s circumference and thought 
it better to return to the authority of the Ancients (Ragep 1993, v. 2, pp. 509–510). 
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But the ongoing interest in observations and the ever increasing size of the instru-
ments to make those observations—eventually culminating in the creation of the 
large-scale observatory—were often justified in terms of glorifying God’s creation 
(Ragep 2001). If my suspicions are correct, it would seem that one of the unexpected 
consequences of the transplantation of ancient astronomy into Islamic soil was the 
subtle yet potent effect of monotheistic creationism in encouraging the astronomer 
to pay close attention to the sensual, phenomenal, and mundane world. 
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Section II

The Ṭūsī-couple and Its Ambulations
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From Tūn to Toruń:  
The Twists and Turns of the Ṭūsī-Couple

F. Jamil Ragep

In discussions of the possible connections between Nicholas 
Copernicus and his Islamic predecessors, the Ṭūsī-couple has often been 
invoked by both supporters and detractors of the actuality of this trans-
mission. But, as I have stated in an earlier article, the Ṭūsī-couple, as well 
as other mathematical devices invented by Islamic astronomers to deal 
with irregular celestial motions in Ptolemaic astronomy, may be of sec-
ondary importance when considering the overall significance of Islamic 
astronomy and natural philosophy in the bringing forth of Copernican 
heliocentrism.1 Nevertheless, the development and use of Naṣīr al-Dīn 
al-Ṭūsī’s (597–672/1201–74) astronomical devices does provide us with 
important evidence regarding the transmission of astronomical models 
and with lessons about intercultural scientific transmission. So in this 
chapter, I attempt to summarize what we know about that transmission, 
beginning with the first diffusion from Azerbaijan in Iran to Byzantium 
and continuing to the sixteenth century. Although there are still many 
gaps in our knowledge, I maintain, based on the evidence, that intercul-
tural transmission is more compelling as an explanation than an as-
sumption of independent and parallel discovery.

T h e  M u l t i p l e  V e r s i o n s  o f  t h e  Ṭū s ī - C o u p l e

It will be helpful if we first analyze what exactly is meant by the “Ṭūsī-
couple.” The first thing to notice is that the term “Ṭūsī-couple” does not 
refer to a single device or model but actually encompasses several differ-
ent mathematical devices that were used for different purposes (see ta-
ble 7.1). Because this understanding is not always upheld in the modern 
literature, there has been considerable divergence, often leading to 
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confusion, about what exactly the Ṭūsī-couple is. This confusion, in turn, 
has made it difficult to trace transmission. So a quick historical overview 
is in order.2

M at h e m at i c a l  R e c t i l i n e a r  V e r s i o n

The first version of the Ṭūsī-couple was announced by Naṣīr al-Dīn al-
Ṭūsī in a Persian astronomical treatise entitled Risālah-i Muʿīniyya 
(Muʿīniyya Treatise), the first version of which was completed on 
Thursday, 2 Rajab 632 (22 March 1235).3 Dedicated to the son of the 
Ismāʿīlī governor of Qūhistān, in the eastern part of modern Iran, the 
treatise is a typical hayʾa (cosmographical) work, one that provides a sci-
entifically based cosmology covering both the celestial and terrestrial 
regions. But in presenting the Ptolemaic configuration of the Moon’s 
orbs and their motions, Ṭūsī notes that the motion of the epicycle centre 
on the deferent is variable, which is inadmissible according to an ac-
cepted rule of celestial physics, namely that all individual motions of 
orbs in the celestial realm should be uniform. He goes on to say, “This is 
a serious doubt with regard to this account [of the model], and as yet no 
practitioner of the science has ventured anything. Or, if anyone has, it 
has not reached us.” But “there is an elegant way to solve this doubt but 
it would be inappropriate to introduce it into this short treatise.” He 
then teasingly turns to his patron: “If at some other time the blessed 
temper of the Prince of Iran, may God multiply his glory, would be so 
pleased to pursue this problem, concerning that matter a treatment will 
be forthcoming.” In the chapter on the upper planets and Venus, as well 
as the one on Mercury, he makes a similar claim, namely that he has a 
solution that will be presented later. In addition to the problem of the 
irregular motion of the deferent (sometimes referred to as the “equant 
problem,” although it is somewhat different for the Moon), Ṭūsī brings 
up another “doubt” or difficulty, namely that pertaining to motion in 
latitude – that is, north or south of the ecliptic. Claudius Ptolemy had 
rather complex models in his Almagest and Planetary Hypotheses that gen-
erated quite a bit of discussion among Islamic astronomers. One of 
these was Abū ʿAlī al-Ḥasan ibn al-Haytham (d. ca. 430/1040), who ob-
jected to the lack of physical movers for these models and provided his 
own in a treatise that is currently not extant. However, Ṭūsī refers to it in 
the Muʿīniyya and also notes that it is not entirely satisfactory; but as with 
his purported models for longitude, he eschews any details.4

Since Ṭūsī claims to have an elegant solution, one assumes that he 
would have presented it to his patron in short order. But, as we shall see, 
he waited almost ten years to present his new models. One clue to the 

163



66   Islamic Astronomy and Copernicus

delay could well be overoptimism on the part of the young Naṣīr al-Dīn; 
he claimed in the Muʿīniyya that he had solutions for all the planets, but 
as it turned out he was never able to solve the complexities of Mercury. 
Indeed, as an older man many years later, he was to admit this setback in 
his Al-Tadhkira fī ʿilm al-hayʾa (Memoir on the Science of Astronomy): 
“As for Mercury, it has not yet been possible for me to conceive how it 
should be done.”5

The partial solution occurs in a short treatise that was again dedicated 
to his patron’s son, Muʿīn al-Dīn. This work has come to us with a variety 
of names: Dhayl-i Muʿīniyya (Appendix to the Muʿīniyya [Treatise]), 
Ḥall-i mushkilāt-i Muʿīniyya (Solution to the Difficulties of the Muʿīniyya), 
Sharḥ-i Muʿīniyya (Commentary on the Muʿīniyya), and so on.6 In all cas-
es of which I know, the work is explicitly tied to Risālah-i Muʿīniyya, lead-
ing one to assume that it must have been written a short time after the 
treatise to which it is appended. This assumption, however, turns out 
not to be correct. Thanks to the recent discovery in Tashkent of a manu-
script witness of the Dhayl-i Muʿīniyya with a dated colophon, we can 
now date this treatise, as well as the first appearance of the Ṭūsī-couple, 
to 643/1245: “The treatise is completed. The author, may God elevate 
his stature on the ascents to the Divine, completed its composition dur-
ing the first part of Jamādā II, 643 of the Hijra [i.e., late October 
1245], within the town of Tūn in the garden known as Bāgh Barakah.”7 
As we can infer from the colophon, Ṭūsī was still in the employ of the 
Ismāʿīlī rulers of Qūhistān in southern Khurāsān. Tūn, present-day 
Firdaws, lay some eighty kilometres (or fifty miles) west-north-west of 
the main town of the region, Qāʾin, which was the primary regional 
capital of the Ismāʿīlīs.8

It clearly took Naṣīr al-Dīn longer than he anticipated to reach a solu-
tion, and even then it was not complete by any means. This “first ver-
sion” of the Ṭūsī-couple consisted of a device composed of two uniformly 
rotating circles that could produce oscillating straight-line motion in a 
plane between two points. One of these two circles was twice as large as 
the second, the smaller one being inside the larger one and tangent at a 
point (see figure 7.1). The rotation of the smaller circle was twice that 
of the larger one. Although mathematically speaking the production of 
an oscillating point on a straight line could also be produced by the 
small circle “rolling” inside the larger, Ṭūsī is explicit that the larger cir-
cle “carries” (mī bard) the smaller one. The reason for this is that Ṭūsī 
will transform these circles into the equators of solid orbs rotating in the 
celestial realm, where any penetration of one solid body by another is 
expressly forbidden.9 The transformation into solid orbs, the “physical-
ized rectilinear version,” is shown in figure 7.2. Note that one needs a 
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third orb, what he calls the “enclosing sphere [muḥṭīa] for the epicycle,” 
in order not to disrupt the epicycle; this third orb keeps D aligned with 
C and A. More on this later when I discuss Nicole Oresme.

Ṭūsī then proceeds to use the device to construct his alternative to 
Ptolemy’s lunar model. It will be instructive, and important for tracing 
transmission, to compare this model from the Ḥall with the model Ṭūsī 
would present in Al-Tadhkira fī ʿilm al-hayʾa, which, unlike the Muʿīniyya 
and the Ḥall, was written in Arabic rather than Persian. The first version 
of the Tadhkira was completed in 659/1261 when Ṭūsī was in the employ 
of his new patrons, the Mongol Īlkhānid conquerors of Iran. Table. 7.2 
provides a summary.

In the Tadhkira, Ṭūsī has made a number of changes in the lunar model 
that he first presented in the Ḥall. The most obvious is the change in ter-
minology: “the dirigent orb” (mudīr) has now become the “large sphere,” 
and the “epicycle’s deferent orb” (ḥāmil) has been renamed the “small 
sphere.” This change is most likely due to the confusion resulting from 
using the terms “dirigent” and “deferent,” which are employed for other 
parts of the planetary models, to also designate the two outer spheres 

7.1 Mathematical rectilinear version of the Ṭūsī-couple.
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making up the Ṭūsī-couple. Another more significant change is dividing 
the inclined orb of the Ḥall into two orbs in the Tadhkira, namely a differ-
ent inclined orb (actually the inclined orb of the Ptolemaic model) and a 
different deferent. The resultant motion of these two orbs is 13;14°/day 
in the sequence of the signs, which is different from the 13;11°/day of 
the Ḥall’s inclined orb. In fact, this difference corrects the mistake in the 
Ḥall, where Ṭūsī made the inclined orb move at the rate of the mean mo-
tion of the Moon (wasaṭ-i qamar), apparently forgetting that this rate 
would result in the parecliptic motion being counted twice.

From this overview, we can conclude that the rectilinear Ṭūsī-couple 
and its applications to various planetary models emerged in stages and 
rather slowly. After Ṭūsī came up with the idea, apparently when writ-
ing the Muʿīniyya, it took many years before he felt comfortable 
enough presenting it in the Ḥall. But even then, the model still had a 
number of problems in both terminology and substance, which weren’t 
solved until the writing of the Tadhkira some fifteen years later. But as 
we shall see, these differences help us in tracing the transmission of 
the device and models. They also help us to make the case, almost a 

7.2 Physicalized rectilinear version of the Ṭūsī-couple.
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Table 7.2 Ṭūsī’s lunar models from the Ḥall and the Tadhkira

Ḥall Tadhkira

Orbs Parameters Orbs Parameters

Parecliptic orb 
(mumaththal)

0;3°/day (cs) Parecliptic orb 
(mumaththal)

0;3°+/day (cs)

Inclined orb (māʾ il) 13;11°/day (s) Inclined orb (māʾ il)
Deferent orb (ḥāmil)

11;9°/day (cs)
24;23°/day (s)

Net: 13;14°/day (s)
Dirigent orb (mudīr) 24;23°/day (s) or (cs) Large sphere  

(al-kabīra)
24;23°/day (s)

Epicycle’s deferent 
orb (ḥāmil-i tadwīr)

48;46°/day (opposite 
direction of dirigent)

Small sphere  
(al-ṣaghīra)

48;46°/day (cs)

Epicycle’s enclosing 
orb (muḥīṭ bi-
tadwīr)

24;23°/day (same 
direction as dirigent)

Enclosing orb  
(al-muḥīṭa)

24;23°/day (s)

Epicycle (tadwīr) 13;4°/day (cs) Epicycle (al-tadwīr) 13;4°/day (cs)

Note: Motion in the sequence (s) or countersequence (cs) of the signs is determined by the orb’s 
apogee point.

7.3 Lunar model from the Ḥall, showing six orbs in four different positions.
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truism in the history of science, that such devices and models take time 
to evolve and be perfected. A sudden appearance of a complete and 
perfected theory or model should make us wary of claims of no trans-
mission or influence.

T w o - E q ua l - C i r c l e  V e r s i o n

In addition to the rectilinear version of the Ṭūsī-couple, Ṭūsī also devel-
oped a curvilinear version that was meant to produce a linear oscillation 
on a great circle arc. This version was used to rectify a number of diffi-
culties in Ptolemy’s latitude theory, as well as a curvilinear oscillation 
caused by the prosneusis point in the latter’s lunar model. In fact, as 
Ṭūsī mentions, it could be used wherever a curvilinear oscillation was 
needed, such as for motions of the celestial poles and vernal equinox, if 
observation showed such phenomena to be real.10

7.4 Lunar model from the Tadhkira, showing seven orbs in four different 
positions.
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But before the final curvilinear version was introduced in the Tadhkira 
in 1261, it evolved slowly over a considerable period of Ṭūsī’s lifetime. In 
the Muʿīniyya, when discussing the models for latitude, Ṭūsī notes that 
Ibn al-Haytham had dealt with latitude in a treatise and gives a brief 
sketch of his theory. But he finds this solution lacking, and criticizes it 
without going into details since “this [i.e., the Muʿīniyya] is not the place 
to discuss it.” Despite this criticism, Ṭūsī does not claim to have a solu-
tion for the problem of latitude, unlike the case of the longitudinal mo-
tions of the Moon and planets.11 In the Ḥall, Ṭūsī refrains from the 
earlier criticism of Ibn al-Haytham and instead presents the latter’s 
model for latitude. Basically, this is an adaptation of the Eudoxan system 
of homocentric orbs, described in Aristotle’s Metaphysics, applied to 
Ptolemy’s latitude models, which used motion on small circles to pro-
duce latitudinal variation.12 It is curious that Ṭūsī offers no model of his 
own, nor does he note, as he does later in the Tadhkira, that motions in 
circles will produce not only latitudinal variations but also unwanted 
longitudinal changes.

But a little over a year later, on 5 Shawwāl 644 (13 February 1247), to 
be exact, Ṭūsī published a sketch of another version of his couple that 
was meant to resolve some of the difficulties of Ptolemy’s latitude mod-
els.13 This version was presented in the context of his discussion of these 
models in book 13 of his Taḥrīr al-Majisṭī (Recension of the Almagest). 
After presenting a summary of Ptolemy’s latitude model for the planets, 
and his special pleading regarding the complicated nature of these 
models, which include the endpoints of the epicycle diameters rotating 
on small circles to produce latitude in a northerly or southerly direc-
tion,14 Ṭūsī provides the following comment:

I say: this discussion is external to the discipline (ṣināʿa) [201b] and is not per-
suasive for this matter. For it is necessary for a practitioner of this discipline to 
establish circles and bodies having uniform motions according to an order and 
arrangement [such that] from all of them [circles and bodies] these various per-
ceived motions will be constituted. For then these motions being on the circum-
ferences of the mentioned small circles, just as they result in the epicycle diameters 
departing from the planes of the eccentrics in latitude northward and southward, 
so too will they result in their departing from alignment with the centre of the 
ecliptic, or from being parallel with diameters in the plane of the ecliptic with the 
exact same longitude, through accession and recession in the exact same amount 
of that latitude. And this is contrary to reality. And it is not possible to say that that 
difference is perceptible in latitude but not perceptible in longitude since they 
are equal in size and distance from the centre of the ecliptic.

169



72   Islamic Astronomy and Copernicus

Now, if the diameter of the small circle were made in the amount of the total 
latitude in either direction, and one imagines that its centre moves on the cir-
cumference of another circle equal to it whose centre is in the plane of the ec-
centric in the amount of half the motion of the endpoint of the diameter of the 
epicycle on the circumference of the first circle and opposite its direction, there 
will occur a shift to the north and south in the amount of the latitude without 
there occurring a forward or backward [motion] in longitude.

To show this, let AB be a section of the eccentric and GD be from the latitude 
circle that passes through the endpoint of the diameter of the epicycle. And they 
intersect at E. EZ EM are the total latitude in the two directions. And EH is half 
of it in one of them. We draw about H with a distance EH a circle EZ and about 
E with a distance HE a circle HTKL. We imagine the endpoint of the diameter of 
the epicycle at point Z to move on circle EZ in direction G to B and the center H 
to move on circle HTKL in the direction G to A with half that motion. Then it is 
clear that when H traverses a quarter and reaches T, Z will traverse a half and 
reach E. Then when H traverses another quarter and reaches K, Z will traverse 
another half and reach M. And when H traverses a third quarter and reaches L, 
Z will traverse another half and will reach E once again. And when H completes 
a rotation, Z will return to its original place so that it will always oscillate in what 
is between ZM on the line GD without inclining from it in directions AB. This is 
the explanation of this method. However, it requires that the time the diameter 
is in the north be equal to the time it is in the south; in reality, it is different from 
that. As for what is said regarding its motion on the circumference of a circle 
about a point that is not its centre, as stated by Ptolemy, this needs consideration 
to verify it according to what has preceded. We now return to the book [i.e., the 
Almagest].15

There are several things we can say about this device. First of all, as 
Ṭūsī notes, it does not accurately model Ptolemy’s latitude theory since it 
results in equal times in the north and in the south.16 Second, the mo-
tion of the epicycle endpoint is uniform with respect to the epicycle’s 
mean apex, which again is contrary to what Ptolemy’s model requires. 
Third, and more significant for our purposes, this model is actually a 
slightly modified version of the rectilinear Ṭūsī-couple that was first pre-
sented in the Ḥall. The problem, however, is that the motion of the end-
point of the epicycle’s diameter is on a straight line, ZM, whereas the 
necessary motion should be on a great circle arc. This problem is curi-
ous. Surely, Ṭūsī is aware that the motion in latitude should occur on the 
surface of a sphere; why, then, does he have this rather stripped-down 
version of his couple that can result only in rectilinear oscillation? The 
answer, it seems, is that at this point he does not have a curvilinear ver-
sion. He is dissatisfied with Ptolemy’s small circles and also realizes that 
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Ibn al-Haytham’s model does little more than provide a solid-sphere ba-
sis for the inadequate small circles, but all he has to offer is a kind of 
vague notion that his couple might be modified to create the necessary 
motion in latitude. He clearly is still in the thinking stage.

T h r e e - S p h e r e  C u r v i l i n e a r  V e r s i o n

Ṭūsī does not in fact offer a true curvilinear version until almost fifteen 
years later, during the first part of Dhū al-qaʿda 659 (September or 
October 1261), at which time he publishes the first version of his Al-
Tadhkira fī ʿilm al-hayʾa. There, he puts forth a model consisting of three 
additional orbs enclosing the epicycle that are meant to produce a cur-
vilinear oscillation that results in the motion in latitude (see figures 7.6 
and 7.7).17 It is interesting that Ṭūsī presents this new model as a modifi-
cation of Ibn al-Haytham’s earlier attempt,18 which, as we have seen, 
simply provides a physical basis for Ptolemy’s small circles using 

7.5 Two-equal-circle version of the Ṭūsī-couple.
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homocentric orbs, which we may call the Eudoxan-couple (see fig-
ures 7.8 and 7.9).19 In addition to using the curvilinear version to re-
solve the difficulties related to the motion of the planetary epicycles in 
latitude, Ṭūsī notes that it may also be used for moving the inclined orb 
of the two lower planets in latitude and for resolving the irregular mo-
tion brought about by the Moon’s so-called prosneusis point. Finally, he 
states that this version could also be used to model the variable motion 
of precession (“trepidation”) and the variability of the obliquity if these 
two motions were found to be real.20 As we will see, these suggestions for 
extended usage of the couple turn out to be significant.

U s e  o f  t h e  C o u p l e  f o r  q u i e s  m e d i a

There is another issue related to the rectilinear couple that may have a 
bearing on tracing transmission. Quṭb al-Dīn al-Shīrāzī, one of Ṭūsī’s as-
sociates in Marāgha and subsequently one of the eminent philosophers 
and scientists at Mongol courts in Tabrīz, remarks in his Al-Tuḥfa al-
shāhiyya fī al-hayʾa, written after Ṭūsī’s death in 684/1285, that “it is 

7.6 Complete curvilinear version of the Ṭūsī-couple, showing three embedded 
solid orbs (or hollowed-out spheres) with different axes enclosing the epicycle.
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possible to use this [lemma] to show the impossibility (imtināʿ) of rest 
between a rising and falling motion on the line (samt) of a terrestrial 
diameter.”21 The idea here is that the Ṭūsī-couple, by showing that os-
cillating straight-line motion can be continuous, counters Aristotle’s 
contention that there would be a “moment of rest” (quies media) be-
tween rising and falling.22 This view was contested, and in fact Shams 
 al-Dīn al-Khafrī (fl. 932/1525), in his commentary on the Tadhkira, dis-
putes Shīrāzī on this point. As we shall see, there are echoes in Latin 
Europe of this debate, which could well be due to transmission.

S i g h t i n g s  o f  t h e  Ṭū s ī - C o u p l e  i n  N o n - I s l a m i c 
C u l t u r a l  C o n t e x t s  b e f o r e  1 5 4 3 2 3

We should note here that the development of the different versions of 
the Ṭūsī-couple, and the models based upon them, took place over a 
twenty-five-year period. The use, further development, and discussion of 

7.7 Polar view of the complete curvilinear version, showing the motion  
of the endpoint of the diameter of the epicycle along a great circle arc.
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the various versions of the couple in an Islamic context, such as I have 
noted above in the case of the quies media debate, can be traced over 
many centuries; the couple, which became known as the “large and 
small model [or hypothesis]”24 (aṣl al-kabīra wa-l-ṣaghīra), was incorporat-
ed into other theories and systems, as well as explained in a number of 
commentaries and independent works. There can be no question that 
these later developments and discussions in an Islamic context, in what-
ever language, can be traced back to one or more of Ṭūsī’s works. 
However, when we cross cultural boundaries, the situation becomes less 
clear-cut, and here one is faced with a variety of opinions about the ori-
gin of “Ṭūsī-couple sightings” in these other cultural contexts. With the 
exception of one example, and possibly a second, there are no cases 
of translations of Ṭūsī’s writings on the couple into non-Islamicate lan-
guages. So in order to advocate that the appearance, or “sightings,” of 
the couple in other contexts is due to intercultural transmission, we will 
be faced in most cases with the need to postulate either nonextant texts 
or nontextual transmission. Such arguments will thus need to be based 
on plausibility rather than direct evidence; but many arguments of 

7.8 Ibn al-Haytham’s Eudoxan-couple, showing two spheres.
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transmission in the history of science are based upon such plausibility 
arguments and often become virtually irrefutable, especially when pre-
cise numeration is involved. The case for the transmission of the Ṭūsī-
couple is not quite so iron-clad, but given the various types of evidence 
that can be brought to bear, I argue that independent rediscovery, espe-
cially multiple times, becomes much less compelling.

But before presenting that evidence, I shall list and discuss the various 
sightings. Because of the problematic nature of some of the material, 
especially in the case of Oresme, I will devote considerably more space 
to some examples than to others.

Transmission to Byzantium

The first known appearance of the Ṭūsī-couple outside Islamic societies 
occurred around 1300, most likely through the efforts of a certain 
Gregory Chioniades of Constantinople, who is known for translating a 
number of astronomical treatises from Persian (or perhaps Arabic) into 

7.9 Motion of the endpoint of the diameter of the epicycle on a circular path 
rather than a great circle arc.
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Greek.25 Included in these works is a short theoretical treatise that has 
been dubbed The Schemata of the Stars.26 The lunar model in the Schemata 
uses the Ṭūsī-couple, and there are diagrams in one of the codices that 
greatly resemble diagrams in Ṭūsī’s works.27

As I argue in a recent paper, the Schemata is mostly a translation of 
certain parts of Ṭūsī’s Muʿīniyya, with the Ṭūsī-couple and lunar model 
coming from the Ḥall;28 thus what we are dealing with is a case of the 
abridgement into Greek of a Persian original that we can confidently 
identify. It seems that Chioniades was tutored by a certain Shams al-Dīn 
al-Bukhārī (almost certainly Shams al-Dīn Muḥammad ibn ʿAlī Khwāja 
al-Wābkanawī al-Munajjim), who chose to teach his tutee using Ṭūsī’s 
earlier Persian works rather than his revised and up-to-date Tadhkira.29 
It is not known whether this was for linguistic reasons (Chioniades per-
haps knowing Persian but not Arabic) or because of a reluctance to give 
a Byzantine access to cutting-edge astronomical knowledge.30 In any 
event, we can safely say that the version of the Ṭūsī-couple and lunar 
model found in the Schemata came from the Ḥall since both have six 
orbs for the lunar model and the same mistake in the inclined orb, 
namely 13;11°/day (s) rather than the correct 13;14°/day (s).31

The surprising conclusion is that the first known transmission of Ṭūsī’s 
models came from his earlier Persian works, which contained a signifi-
cant error. Furthermore, the only planetary model transmitted was the 
lunar model, and there is no hint in the Schemata of the models for lati-
tude, either from the Taḥrīr or from the Tadhkira. Nevertheless, there 
can be no question that some of Ṭūsī’s innovations had made their way 
into Greek by the early fourteenth century, and the existence in Italy of 
the only three known manuscript witnesses strongly suggests that the 
transmission of this knowledge had made it into the Latin world by the 
fifteenth century.32

I should also mention here that since Chioniades read the Ḥall, he 
would no doubt have been exposed to Ibn al-Haytham’s latitude theory, 
which made up chapter 5 of that work.33 This influence may well have 
relevance to the question of how that rather obscure theory might have 
reached scholars in Latin Europe.

The Ṭūsī-Couple and the Eudoxan-Couple in Latin Europe

Historians have identified multiple sightings of the Ṭūsī-couple and the 
Eudoxan-couple (i.e., Ibn al-Haytham’s) in Latin Europe, starting in the 
fourteenth century. What follows is a chronological list, although cer-
tainly not exhaustive, of the figures associated with these sightings.
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Avner de Burgos
The Jewish philosopher and polemicist Avner de Burgos (ca. 1270–
1340), a convert to Christianity who became known as Alfonso de 
Valladolid, proved a theorem in a Hebrew work identical to a rectilinear 
Ṭūsī-couple. Tzvi Langermann has noted that Avner “adduces his theo-
rem in a mathematical context, the stated purpose of which is ‘to con-
struct (li-ṣayyer) a continuous and unending rectilinear motion, back 
and forth along a finite straight line, without resting when reversing di-
rection [literally: “between going and returning”].’”34 What is interest-
ing here is that this use of the couple, as part of the quies media debate, is 
not something one finds in Ṭūsī but is to be found in the work of his as-
sociate and student Shīrāzī. As we will see, this may well have implica-
tions for the transmission of the couple to Europe.

Nicole Oresme
Nicole Oresme (ca. 1320–82), in his Questiones de spera, which treats 
Johannes de Sacrobosco’s On the Sphere of the World, describes some sort 
of model that will produce reciprocating rectilinear motion from three 
circular motions. Both Garrett Droppers and Claudia Kren raised the 
possibility that Oresme was somehow influenced by “Ṭūsī’s device.”35 
Recently, André Goddu has challenged this possibility and has raised 
another one, namely that Oresme hit upon a solution similar to Ṭūsī’s 
for producing rectilinear motion from circular motions – although still 
leaving open the (weak?) alternative that Oresme may have come across 
some description of it.36 Because Goddu’s speculations, discussed below, 
depend upon several misinterpretations of both Ṭūsī and Oresme, we 
need to carefully consider what Oresme is proposing. Here is Kren’s 
translation of the relevant passage with my suggested revisions:37

Concerning this problem [i.e., whether celestial bodies move in circular mo-
tion], I propose three interesting conclusions. First, it is possible for some planet 
to be moved perpetually according to its own nature in a rectilinear motion 
composed of several circular motions. This motion can be brought about by 
several intelligences, any one of which may endeavor to move in a circular mo-
tion, nor would this purpose be in vain [rev: and (the intelligence) is not frustrated 
in this endeavor].

Proof: Let us propose, conceptually, as do the astrologers, that A is the deferent 
[rev: deferent circle] of some planet, or its center; B is the epicycle [rev: epicycle 
circle] of the same planet; and C is the body of the planet, or its center; I take 
these [latter two?] as equivalent. Let us also imagine line BC from the center of 
the epicycle to the center of the planet, and CD, a line in the planet on which BC 
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falls perpendicularly. Let circle A move on its center toward the east, and B to-
ward the west. The planet, C, revolves on its own center toward the east. Moreover, 
since line BC is of constant length, because it is a radius, let us propose that the 
distance [rev: amount] B descends in [rev: according to] the motion of the defer-
ent is the distance which [rev: as much as] point C may ascend [rev: ascends] with 
the motion of the epicycle. From this one can obviously observe that point C in 
some definite time will be moved in a straight line. Let us then further assume that 
point B would ascend by its own motion on just the circumference on which it may descend 
with the motion of the planet [rev: Let us then further assume that the circuit on 
which B would ascend by its own motion is as much as the motion of the planet 
descends]. It is further clear that point D will move continually on the same line; 
thus the entire body of the planet will be moved to some terminus in a rectilinear 
motion and will return again with a similar motion.38

To analyze this passage, and to understand Oresme’s intention, we 
should note from the last sentence that the body of the planet is meant 
to move rectilinearly. Furthermore, not only does the centre of the plan-
et (C) move in a straight line but a certain point (D), which is the end-
point of a planetary radius (CD), does as well.

Droppers, and Goddu who follows him, do not take the rectilinear 
motion of D into account; inexplicably, both have D at the end of a 
planetary radius whose starting point is C, the centre of the planet (see 
figure 7.10).39

In contrast, Kren does follow Oresme’s text and provides a plausible 
reconstruction based upon a more or less correct interpretation of Ṭūsī’s 
Tadhkira as she found it in Carra de Vaux’s flawed 1893 French trans-
lation. Oresme provides no diagram, and Kren must admit that “as it 
 appears in Oresme’s Questiones de spera, the passage makes no sense 
whatsoever.”40 Nevertheless, following Kren’s lead and making a few 
modifications, I believe we can reconstruct both Oresme’s model and 
his intention.41 In essence, what Kren proposes is that Oresme is not 
discussing the simple two-circle Ṭūsī-couple, which results in the rectilin-
ear oscillation of a point between two extrema, but rather Ṭūsī’s physi-
calized rectilinear version, which we have already encountered above.42

With reference to figure 7.2 and using Oresme’s description, let us 
take A to be the centre of the deferent, B the centre of the epicycle, and 
C the centre of the planet. The solid lines indicate the outer surfaces of 
solid bodies, whereas the dotted lines indicate “inner equators” of these 
solid bodies. Note that the solid orbs are the actual moving bodies; they 
“accidentally” produce the mathematical Ṭūsī-couple indicated by the 
broken lines. So for this model to work, the epicycle (B) needs to move 
with twice the angular speed as the deferent (A) and in the opposite 
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direction. These movements will then result in the planet’s centre (C) 
oscillating on a straight line. They will not, however, result in the apex of 
the planet (D) moving rectilinearly. As shown in the diagram, when the 
deferent and epicycle have rotated from an initial position (where A, B, 
C, and D were on the same line), D will move from D0 to D1. To deal 
with this issue, Ṭūsī introduces what he calls an enclosing sphere (kura 
muḥīṭa), which is shown in the diagram as an orb enclosing and concen-
tric with the planet (C). This orb would then have the job of moving D 
from D1 back to its initial position of D0. Since ∠BAC = ∠D0CD1, the 
enclosing sphere needs to move with the same speed and direction of 
the deferent (A) in order to keep D oscillating on the straight line.

Kren has assumed that Oresme is simply copying Ṭūsī’s physicalized 
rectilinear version, and she has some tortured readings that would intro-
duce this fourth, enclosing orb into Oresme’s account. But Oresme 
clearly says he only needs three circular motions, and in fact Ṭūsī’s com-
mentators indicate that one could replace orb C and the enclosing orb 
by combining their motions into a single orb. Ṭūsī does not do so, 

7.10 Oresme’s construction as proposed by Droppers.
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probably because for him orb C is an epicycle, not an otherwise station-
ary planet, and he does not want to lose its parameters, which are criti-
cal for Ptolemaic planetary theory, by combining it with another orb. 
But Oresme has no such constraints since for him the construction does 
not represent an actual planetary model. So the planet (C) can move as 
needed – in this case, with just the rotational direction and speed of the 
deferent (A) that will keep line CD aligned with the line of oscillation.

How well does this interpretation fit with the existing text? Actually, 
rather well, all things considered. Turning to figure 7.11, let us go 
through the various features as presented by Oresme:

1 A is the deferent, which “carries” (deferre) the epicycle (B); the plan-
et (C) is moved by the epicycle. According to most standard medi-
eval accounts, and presumably this idea is what Oresme intends by 
referring to the conceptualization of the astrologers, the epicycle is 
embedded in the deferent and the planet is embedded in the epi-
cycle, as shown.

2 A radius (CD) of the planet would in general not be perpendicular 
to line BC in this construction; however, it would be perpendicular 
at the quadratures, as noted by Kren. As mentioned above, the alter-
native given by Droppers and followed by Goddu (see figure 7.10) 
does not fit the stipulation that D remain on the line of oscillation.

3 The directions of the motions (A eastward, B westward, and C east-
ward) is consistent with Ṭūsī’s model.

4 Oresme emphasizes that BC is a radius of constant length, which 
probably indicates that he is aware that this stipulation is part of the 
proof for the Ṭūsī-couple. For this model to work so that point C 
 remains on a straight line, Oresme needs to make B rotate twice as 
fast as A (or in his terms, point B will descend due to A, while C will 
ascend with twice the speed due to B). However, he seems to imply 
that the deferent and epicycle rotate at the same speed (or descend 
and ascend in equal amounts). Unless he has some other sense for 
“ascend” and “descend,” Oresme does not seem to be in control 
of this rather critical part of the model.

5 If one accepts my emended translation, Oresme does understand 
that the planet will need to rotate in the direction opposite that of 
the epicycle. Again, we are not provided with any amounts, but it 
seems that Oresme is conceiving of D0 being displaced to D1 by the 
“ascending” motion of B, which would then need to be countered 
by the descending motion of the planet (see figure 7.2). The flow of 
the argument is then clear: he begins by “proving” that C will oscil-
late on a straight line and follows with his “proof” that D will follow 
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suit and stay on the straight line by means of the additional motion 
of the planet.

What conclusions can we reach? On the one hand, Oresme is evident-
ly aware of what we may call Naṣīr al-Dīn’s physicalized Ṭūsī-couple as 
presented in the Tadhkira. But Oresme makes no claim to have invented 
this model on his own; and given his apparent lack of understanding of 
the necessity of having the epicycle move at twice the speed of the defer-
ent, it would be implausible in the extreme to assume that he reinvented 
this model. On the other hand, the three-sphere version that Oresme 
presents, as a deferent-epicycle-planet construction, is not to be found 
explicitly in Ṭūsī or other Islamic sources of which I am aware; thus it 
seems likely that Oresme or an intermediary had adapted the model for 
this philosophical discourse. Finally, we should note that there is an echo 
of the use of the Ṭūsī-couple for the quies media debate that we first en-
countered with Shīrāzī. Oresme states, “By the imagination, it is possible 
that rectilinear motion be eternal, with the exception that in the point of 
reflection the movable would not be said to be moved nor at rest.”43

7.11 Oresme’s physicalized rectilinear version of the Ṭūsī-couple.
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Joseph Ibn NaH. mias
In his The Light of the World, Joseph ibn Naḥmias, a Spanish Jew living in 
Toledo around 1400, used a double-circle device in his astronomical 
models that is mathematically equivalent to Ṭūsī’s curvilinear version 
from his Tadhkira but in its truncated, two-sphere version. He also incor-
porates it into his recension of Light of the World. Note that despite living 
in the Christian part of the Iberian Peninsula, Ibn Naḥmias wrote Light 
of the World in Judeo-Arabic (Arabic in Hebrew script), although the 
 recension is in Hebrew. In chapter 8 of the present volume, Robert 
Morrison details Ibn Naḥmias’s use of the Ṭūsī-couple and also discusses 
the vexed question of its possible transmission to Ibn Naḥmias and other 
Jewish scholars.44 I shall return to this question below.

Georg Peurbach
From an extensive mathematical analysis of the 1510 and 1512 annual 
ephemerides of Johannes Angelus, Jerzy Dobrzycki and Richard Kremer 
have concluded that they were based upon modifications of the Alfonsine 
Tables, these modifications consisting of mechanisms meant to produce 
harmonic motion that were somehow added to the standard Ptolemaic 
models.45 Because Angelus seems to indicate that these were based upon 
a new table of planetary equations due to Georg Peurbach (d. 1461), 
Dobrzycki and Kremer speculate that the underlying models used by 
Peurbach incorporated one of the Marāgha models, perhaps the Ṭūsī-
couple or the mathematically equivalent epicycle/epicyclet of ʿAlāʾ al-
Dīn ibn al-Shāṭir. Aiton has also raised the possibility that Peurbach in 
his Theoricae novae planetarum may be referring to Ibn al-Haytham’s 
Eudoxan-couple when he states, “On account of these inclinations and 
slants of the epicycles, some assume that small orbs have the epicycles 
within them, and that the same things happen to their motion.”46 
Although speculative, these authors’ conclusions do point to the possi-
bility that European astronomers in the late fifteenth and early sixteenth 
centuries, other than Copernicus, used and adapted devices that we nor-
mally associate with Islamic astronomy. This is an important point that 
we will revisit when we discuss some of the objections that have been 
raised to astronomical transmission from Islam to Latin Europe.

Johann Werner
In his De motu octavae sphaerae, Johann Werner (1468–1522) uses a two-
equal-circle device to deal with the issue of variable precession, or trepi-
dation. According to Dobrzycki and Kremer, “Werner allotted the 
trepidational motion of ‘Thabit’s’ [Thābit ibn Qurra’s] and Peurbach’s 
models to the solstitial points of two concentric spheres. Two circles of 
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trepidation, of equal radii and centred on the solstitial points of the 
next higher sphere, rotate in opposite directions so that trepidational 
variations in longitude do not introduce shifts in the obliquity of the 
ecliptic. Werner thus managed to generate linear harmonic motion by 
the uniform motions of two circles.”47 This model sounds a lot like the 
two-equal-circle version of the Ṭūsī-couple, but we need to be cautious. 
Werner does not use a 2:1 ratio for the motions of the two circles, and in 
his earlier analysis, Dobrzycki specifically states that this is not the Ṭūsī-
couple as used, for example, by Copernicus.48 However, since Werner’s 
intention is to generate a linear oscillation to avoid shifts in the obliqui-
ty, one can indeed see a connection. However, further research would 
be needed to establish a relationship between Werner’s use and earlier 
uses of the Ṭūsī-couple.49

Giovanni Battista Amico
Giovanni Battista Amico (d. 1538) used the three-sphere curvilinear ver-
sion as described in the Tadhkira in his De motibus corporum coelestium, pub-
lished in 1536;50 in other words, he used the version with three spheres, 
two producing the curvilinear oscillation on the surface of a sphere and 
the third functioning as a counteracting sphere so that only the curvilin-
ear oscillation of its pole is transmitted to the next lower sphere.51 
According to Mario Di Bono, “It is of particular interest that in the 1537 
[revised] edition of his work Amico is aware that on the surface of a 
sphere the demonstration does not function as it should; but since the 
inclination of the axes is not great, he considers the error negligible.”52

Girolamo Fracastoro
Girolamo Fracastoro in his Homocentrica, published in 1538, refers to a 
device for producing rectilinear motion but does not incorporate it into 
his astronomy. The description and diagram make it clear that he is re-
ferring to the two-equal-circle version.53

Nicholas Copernicus
Noel Swerdlow and Otto Neugebauer succinctly summarize Copernicus’s 
use of the various devices invented by Ṭūsī: “In De revolutionibus he uses 
the form of Ṭūsī’s device with inclined axes for the inequality of the pre-
cession and the variation of the obliquity of the ecliptic, and in both the 
Commentariolus and De revolutionibus he uses it for the oscillation of 
the orbital planes in the latitude theory. In the Commentariolus he uses 
the form with parallel axes for the variation of the radius of Mercury’s 
orbit, and by implication does the same in De revolutionibus although 
without giving a description of the mechanism.”54
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However, we will need to examine the situation a bit more closely.55 
Let us take De revolutionibus orbium coelestium first. In fact, the device put 
forth and the proof given in book 3, chapter 4, for variable precession 
and the variation of the obliquity are, pace Swerdlow and Neugebauer, 
for the two-equal-circle version, not for the two- or three-sphere curvilin-
ear version (i.e., “Ṭūsī’s device with inclined axes”). And in all other cas-
es in which he uses it in De revolutionibus (for Mercury’s longitude model 
in book 5, chapter 25, and for the latitude theory in book 6, chapter 2), 
Copernicus refers the reader back to book 3, chapter 4. We may then 
conclude that Copernicus wishes to use the two-equal-circle version 
 exclusively in De revolutionibus. As Swerdlow and Neugebauer note, 
Copernicus’s statement that he will be using chords rather than arcs (as 
necessitated by the use of the rectilinear rather than curvilinear version) 
is reasonable since the deviation from a curvilinear version is relatively 
minor.56 But it does raise questions about the kind of modelling 
Copernicus uses in De revolutionibus, in contrast to the Commentariolus. In 
the Commentariolus, it is the truncated two-sphere curvilinear version 
that is used for the latitude models,57 and it is the physicalized rectilin-
ear version that is used to vary the radius of Mercury’s orbit but in a 
truncated, two-sphere version without the enclosing/maintaining 
sphere.58 The conclusion seems to be that Copernicus was attempting to 
provide actual spherical models for the two versions of the Ṭūsī-couple 
he uses in the Commentariolus but that he cut a corner or two by not deal-
ing with the disruption of the contained orb, which, after all, is why Ṭūsī 
(and Amico) have their maintaining (or withstanding) spheres. In De 
revolutionibus, Copernicus abandons any pretense of full physical models 
for his Ṭūsī-couples and instead relies only on the two-equal-circle ver-
sion, which, as we have seen, is a mathematical, not a physical, model.59

T h e  T r a n s m i s s i o n  S k e p t i c s 6 0

Although difficult to gauge in a precise way, impressionistically it seems 
that a majority of historians of early astronomy have accepted, to a lesser 
or greater degree, the influence of late-Islamic astronomy on early mod-
ern astronomers, particularly Copernicus. This acceptance is perhaps 
most explicitly set forth by Swerdlow and Neugebauer: “The question 
therefore is not whether, but when, where, and in what form he 
[Copernicus] learned of Marāgha theory.”61

Nevertheless, there have been a number of skeptics who have raised 
various issues that are worth exploring. In 1973, for example, Ivan 
Nikolayevich Veselovsky called attention to what is the converse of the 
Ṭūsī-couple, namely a device for producing a circular motion from 
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straight-line motions, which was set forth by Proclus in his commentary 
on book 1 of Euclid’s Elements.62 Copernicus refers to just this passage in 
Proclus when he uses the Ṭūsī-couple for his Mercury model.63 But there 
are numerous problems with attributing Copernicus’s source to Proclus 
rather than Ṭūsī. In the first place, Proclus, as mentioned, is setting forth 
a way to produce circular motion from linear motions, which is the op-
posite of what the Ṭūsī-couple does.64 Second, as noted by Swerdlow, 
Edward Rosen, and originally Leopold Prowe, Copernicus only received 
a copy of Proclus’s book in 1539 as a gift from Georg Joachim Rheticus, 
which is many years after first using the couple in the Commentariolus.65 
Di Bono proposes, as a way to save Veselovsky’s suggestion, the possibil-
ity that Copernicus may have seen a copy of the original Greek while in 
Italy, this idea gaining some plausibility because it was part of the li-
brary that Cardinal Basilios Bessarion had bequeathed to the Venetian 
Senate.66 But again this suggestion raises numerous other problems, 
namely that Copernicus is then required to have read, or to have had 
read to him, a Greek manuscript and that he was then inspired by an 
obscure passage in it talking about something only vaguely related to a 
device that, as we have seen, was certainly available from other sources. 
And Copernicus himself does not even get the reference to Proclus cor-
rect; he has Proclus claiming that “a straight line can also be produced 
by multiple motions,”67 but as we have seen, Proclus refers to the pro-
duction of a circle, not a straight line. And in any event, Copernicus 
himself mentions “some people” who refer to the Ṭūsī device as produc-
ing “motion along the width of a circle,”68 which indicates that the de-
vice is used by others (and almost certainly is not of his own making) 
and that Proclus is not one of these people since Proclus does not, and 
could not, refer to the motion as such.

Di Bono is certainly the most thoughtful skeptic, and his skepticism is 
nuanced and tempered. As an alternative to an Islamic connection, 
which he does not reject out of hand, he proposes that Copernicus, with 
the same aim of resolving the issues of irregular motion in Ptolemy’s 
models, basically came up with the same set of devices and planetary 
models.69 “As to Amico and Fracastoro, there is no need to imagine a 
source or a specific author from whom both authors derived the same 
device, nor to imagine a strict interdependence between them.”70 What 
is ironic here is that Di Bono begins his article insisting on examining 
the differences between the various models and their uses among the 
different astronomers he examines. As he puts it, “Moreover, as in this 
case even marginal similarities or differences may be of relevance, it is 
of the utmost importance not to cause such differences to disappear in 
the reduction to the mathematical formalism in use today.”71 But in the 
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conclusion of the article, where he needs to reduce these differences 
in order to argue against transmission and for multiple rediscovery 
(or parallel development), he falls back upon Neugebauer’s point that 
“[t]he mathematical logic of these methods is such that the purely his-
torical problem of the contact or transmission, as opposed to indepen-
dent discovery, becomes a rather minor one.”72 But the problem with 
this position is that the differences on which Di Bono is so insistent 
 earlier in his article here fade to irrelevance since the “internal logic” 
supersedes any attempt to understand the historical developments in-
volved; each actor is foreordained to come up with the “same” solution, 
even when these solutions are not the same. Yet another problem with 
Di Bono’s position is that none of his European actors has left any hint 
that they developed the basic devices on their own. And where we do 
have a discussion of sources, namely in De revolutionibus, Copernicus on 
the one hand makes a somewhat irrelevant gesture toward Proclus – 
which has all the hallmarks of a humanist need to pad his text with a 
classical reference – and on the other hand, as we have seen, refers to 
others who have used the device. So Di Bono’s contention that “the re-
ciprocation device … could equally well have derived from an indepen-
dent reflection [by Copernicus] on these same problems” seems to be 
undermined by what evidence is at hand.

A more recent skeptic is André Goddu, who agrees with Di Bono’s 
skepticism about an Islamic influence but is equally skeptical about Di 
Bono’s suggestion of a Paduan source. Instead, he proposes Oresme as 
the ultimate source of the reciprocating device in Europe, someone Di 
Bono does not mention in his own, wide-ranging article. As we have 
seen, Oresme does indeed describe a reciprocation device, but it is rath-
er different from the one Goddu envisions.73 Be that as it may, Goddu 
proposes the following: “The path to Copernicus would have proceeded 
from Oresme to Hesse, Julmann, and Sandivogius, and from them to 
Peurbach, Brudzewo, and Regiomontanus.” But in making such a pro-
posal, Goddu has confused, or conflated, two totally different models. 
Henry of Hesse (ca. 1325–97), a certain magister Julmann (alive in 
1377), Albert of Brudzewo (1445–95), and perhaps Peurbach are not 
describing (“using” would be misleading here) some version or other of 
the Ṭūsī-couple but rather something like Ibn al-Haytham’s Eudoxan-
couple (see above). As for Sandivogius of Czechel (fl. 1430), what is 
 being put forth is an additional epicycle for the Moon that would coun-
ter the original epicycle’s motion; without this additional epicycle, we 
should be able to see both faces of the Moon, something that is not ob-
served.74 Goddu seems to be depending mainly on José Luis Mancha 
for his information on Hesse, Julmann, Peurbach, and Brudzewo, but 
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Mancha makes it very clear that what they are dealing with is Ibn al-
Haytham’s Eudoxan-couple, not the Ṭūsī-couple.75 Thus when Goddu 
seeks to make Oresme the source for Hesse and subsequent writers, he 
is making a fundamental mistake, namely having something that is like-
ly to have been some sort of Ṭūsī device be the source for a totally differ-
ent type of model. Oresme was seeking to produce rectilinear motion 
from circular motion, whereas most of the other authors Goddu deals 
with (excepting Copernicus, of course) are simply reporting a way to 
physicalize the small circle motion of Ptolemy’s latitude theory or are 
using the same device for the oscillation of the lunar apogee due to the 
Moon’s prosneusis point.76 That Goddu further claims that an adapta-
tion by Copernicus of the Eudoxan model that Brudzewo describes is 
equivalent to the wholesale incorporation of Ibn al-Shāṭir’s models into 
the Commentariolus is, to say the least, bizarre in the extreme.77

E m p i r i c a l  E v i d e n c e  f o r  T r a n s m i s s i o n

Both Di Bono and Goddu ask for more evidence for transmission before 
passing judgment. This is a fair comment, and in what follows I present 
some of the evidence that has been discovered over the past twenty-five 
years or so.78 I divide this evidence up into different pathways that trans-
mission did take or could have taken.

The Byzantine Route

As mentioned above, it is now clear that the Ṭūsī-couple first made its way 
into another cultural context through Byzantine intermediaries, first 
and foremost Gregory Chioniades, who travelled to Tabrīz around 1295 
and studied with a certain Shams Bukharos, whom we can now identify 
as Shams al-Din al-Wābkanawī.79 That this transmission occurred through 
an adapted translation from Persian into Greek raises some interesting 
issues of intercultural exchange. Was this translation a result of the fact 
that the language of trade between Byzantium and Iran was mainly in 
Persian? If so, Chioniades may have had an easier time finding someone 
to teach him Persian than Arabic. And indeed, most of the Islamic astro-
nomical works that found their way into Greek seem to have been from 
Persian sources.80 This Persian bias may help us to understand why an 
ostensibly out-of-date treatise, such as Ṭūsī’s Persian Muʿīniyya and its ap-
pendix, the Ḥall, which, as we have seen, contained the first versions of 
Ṭūsī’s rectilinear couple and lunar model, were provided and taught to 
Chioniades rather than the mature versions found in Ṭūsī’s later 
Tadhkira, which was in Arabic. But there could be other reasons. One of 
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Chioniades’s successors, George Chrysococces (fl. 1350), relates the fol-
lowing story, which was told to him by his teacher Manuel:

in a short while he [i.e., Chioniades] was taught by the Persians, having both 
consorted with the King, and met with consideration from him. Then he de-
sired to study astronomical matters, but found that they were not taught. For it 
was the rule with the Persians that all subjects were available to those who wished 
to study, except astronomy, which was for Persians only. He searched for the 
cause, which was that a certain ancient opinion prevailed among them, concern-
ing the mathematical sciences, namely, that their king will be overthrown by the 
Romans, after consulting the practice of astronomy, whose foundation would 
first be taken from the Persians. He was at a loss as to how he might come to 
share this wonderful thing. In spite of being wearied, and having much served 
the Persian king, he had scarcely achieved his objective; when, by Royal com-
mand, the teachers were gathered. Soon Chioniades shone in Persia, and was 
thought worthy of the King’s honor. Having gathered many treasures, and orga-
nized many subordinates, he again reached Trebizond, with his many books on 
the subject of astronomy. He translated these by his own lights, making a note-
worthy effort.81

This passage of course reminds us, if we need reminding, that intercul-
tural transmission at the time did take considerable effort and was not 
always a straightforward process. But it also teaches us that transmission 
was indeed possible. In this case, the transmission of the couple and 
models based on it is clear since they occur in Chioniades’s Schemata. 
Less clear are the circumstances under which the Schemata itself was fur-
ther transmitted. And did other knowledge contained in the Muʿīniyya 
and the Ḥall, but not contained in the Schemata, also get transmitted? An 
example of this latter case would be Ibn al-Haytham’s Eudoxan-couple, 
which, as mentioned, was presented in a separate chapter in the Ḥall by 
Ṭūsī. Ibn al-Haytham’s work itself is not extant, and the presentation in 
the Tadhkira is much more succinct than what is in the Ḥall. So a trans-
mission of the Eudoxan-couple via Chioniades would provide an impor-
tant link taking us to Henry of Hesse and beyond.

The Schemata is currently witnessed by three manuscripts: two in the 
Vatican (Vat. Gr. 211, fols 106v–115r [text], fols 115r–121r [diagrams]; 
and Vat. Gr. 1058, fols 316r–321r) and one at the Biblioteca Medicea 
Laurenziana in Florence (Laur. 28, 17, fols 169r–178r).82 The Vatican 
manuscripts have diagrams, whereas the Florence one does not.83 In 
Vaticanus Graecus 211, one diagram represents the mathematical recti-
linear version of the Ṭūsī-couple (fol. 116r), and another represents al-
Ṭūsī’s lunar model from the Ḥall (fol. 117r), the one with six rather than 
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seven orbs. The Florence manuscript was copied in 1323 according to 
the colophon on folio 222v, but it is not clear when the manuscript ar-
rived in Italy. Vaticanus Graecus 211 was copied in the early fourteenth 
century and was recorded in the Vatican inventory of 1475; Vaticanus 
Graecus 1058 was copied in the middle of the fifteenth century and was 
perhaps in the Vatican inventory of 1475 but certainly, according to 
David Pingree, in the inventory made around 1510.84 These sources 
provide us with evidence that the work, with diagrams, was available in 
Italy as early as 1475; on this basis, Swerdlow and Neugebauer favour 
this Italian transmission route for the Ṭūsī-couple to Copernicus, who 
studied and travelled in Italy between 1496 and 1503 (mainly Bologna, 
Padua, and Rome).85 It may be significant that Copernicus spent part of 
the Jubilee year 1500 in Rome, perhaps to do an apprenticeship at the 
Papal Curia, which would have given him access to the Schemata.

The Spanish Connection

Relations between the two main branches of Christendom were fraught, 
and it seems likely that one of the reasons the twelfth-century transla-
tion movement brought Greek classics into Latin via Arabic translations, 
rather than directly from the Greek, was that it was easier to obtain 
Arabic versions of Greek texts in Spain than it was to obtain Greek man-
uscripts from Byzantium. Thus we must be cautious before assuming 
that Byzantine astronomy would have made its way westward before the 
fifteenth century. But there is another route that could have brought 
the new astronomy of thirteenth-century Iran to the Latin West. There is 
considerable historical evidence of ongoing diplomatic activity between 
the Spanish court of Alfonso X of Castile and the Mongol Īlkhānid rul-
ers of Iran. The late Mercè Comes wrote an important article on the 
subject and noted a number of cases of similar astronomical theories 
and instruments appearing in both Christian Spain and Iran during the 
thirteenth century.86 But perhaps the most striking example of a scien-
tific theory from Īlkhānid Iran appearing in Europe is the attempted 
proof of Euclid’s parallels postulate, produced in the important Tabrīz 
scientific milieu of the 1290s, which pops up in the work of Levi ben 
Gerson (Gersonides) in southern France, probably shortly after 1328, 
according to Tony Lévy, who made this important identification.87 This 
is the proof found in the Commentary on Euclid’s Elements published at the 
Medici Press in Rome in 1594 and incorrectly attributed to Ṭūsī; the 
proof was later discussed by the Italian mathematician Giovanni 
Saccheri.88 If something as complicated as this proof of the parallels pos-
tulate could travel from Iran to Avignon in twenty-five years or so, the 
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Ṭūsī-couple, already translated into Greek, could presumably make it to 
France as well and be available for Nicole Oresme. As mentioned above, 
Ibn al-Haytham’s Eudoxan-couple is a bit more difficult to trace, but the 
fact that Chioniades would have no doubt encountered it in his studies 
of the Ḥall provides another plausible vehicle of transmission, as does 
whatever means brought pseudo-Ṭūsī’s parallels proof westward.

The Jewish Link

As we see with Gersonides, perhaps the most important agents of trans-
mission from Islam to Christendom were Jewish scientists and mathe-
maticians. Recent work by Tzvi Langermann and Robert Morrison has 
been ground-breaking in shedding light on a host of characters in-
volved in this transmission. In addition to bringing Avner de Burgos’s 
proof of the Ṭūsī-couple to our attention, Langermann has shown that 
in fifteenth-century Italy, Mordecai Finzi knew the Meyashsher ʿaqov of 
Avner de Burgos, in which, as we have seen, Avner proved that one 
could produce continuous straight-line oscillation by means of a Ṭūsī-
couple. According to Langermann, Finzi clearly knew of the Meyashsher 
ʿaqov, as indicated by his copying of the interesting conchoid con-
struction found in Avner’s text.89 It seems reasonable to assume, as 
Langermann does, that Finzi knew the other parts of the Meyashsher 
ʿaqov, including the Ṭūsī-couple proof. Furthermore, Finzi had exten-
sive contacts with Christian scholars, as he notes in several places in 
his works and translations.90 Thus here we have a Jewish scholar who 
most likely knew of the Ṭūsī-couple in contact with north Italian math-
ematicians a generation or so before Copernicus would be in the 
neighbourhood.

In chapter 8 of the present volume, Robert Morrison discusses anoth-
er avenue through which the Ṭūsī-couple may have become known to 
Italian scholars via Jewish intermediaries. In addition to summarizing 
recent work on Ibn Naḥmias, Morrison traces the interesting career of 
a certain Moses ben Judah Galeano (Mūsā Jālīnūs). Galeano had ties to 
Crete and the Ottoman court of Sultan Bāyazīd II (r. 1481–1512) and 
also travelled to the Veneto region around 1500. Most interesting is that 
Galeano knew of the work of Ibn al-Shāṭir, whose models are so instru-
mental in the Commentariolus. Galeano also knew the writings of Ibn 
Naḥmias, whose models incorporated the Ṭūsī-couple and are quite simi-
lar to ones we find in Johannes Regiomontanus and Giovanni Battista 
Amico. Thus we have another route by which the Ṭūsī-couple may well 
have found its way to Italy in the late fifteenth century.

190



93From Tūn to Toruń: The Twists and Turns of the Ṭūsī-Couple

 

Manuscripts Galore

Something often overlooked in discussions of the transmission of devic-
es like the Ṭūsī-couple (both within Islamic realms and interculturally) is 
that we are not dealing with a limited number of texts and manuscript 
witnesses. If we confine ourselves to Ṭūsī’s works that present one or 
more versions of his couple and to works derived from them (i.e., com-
mentaries, supercommentaries, and closely related works) that were 
composed before 1543 CE, we find at least fourteen texts represented by 
hundreds of witnesses (see table 7.3).91 This table does not include phil-
osophical, theological, and encyclopaedic works, or Quran commentar-
ies, in which the couple is mentioned or discussed.92

I do not claim that the almost 400 manuscript witnesses enumerated 
in table 7.3 would have somehow been available to early modern Euro-
pean astronomers. Indeed, some of these manuscript witnesses were 
copied well after the sixteenth century. Nevertheless, a fair number of 
them currently reside in Istanbul and other former Ottoman lands, in-
cluding those in eastern Europe. Although most of the Islamic manu-
scripts currently in European libraries were collected after 1500,93 there 
were presumably Islamic scientific manuscripts that were available in 
various parts of Europe previous to that date.94

The last bit of empirical evidence for transmission is indirect but 
highly suggestive. Recently, it has come to light that the critical proposi-
tion that Swerdlow has claimed was used by Copernicus to transform 
the epicyclic models of Mercury and Venus into eccentric models, which 
is found in Regiomontanus’s Epitome of the Almagest, was put forth earlier 
in the fifteenth century by ʿAlī Qushjī of Samarqand.95 Although it is 
not known how Qushjī’s treatise came to be known by Regiomontanus 
– which seems much more likely to me than independent rediscovery of 
the proposition96 – a likely candidate is Cardinal Basilios Bessarion 
(d.  1472), the Greek prelate who almost became the Roman pope. 
Bessarion travelled to Vienna in 1460, where he met both Peurbach 
and Regiomontanus. That Qushjī’s proposition occurs in the Epitome, 
which was completed around 1462, suggests that Bessarion is the inter-
mediary. This idea gains further plausibility since he was originally from 
Trebizond and spent considerable time in Constantinople before its 
fall to the Ottomans in 1453. Consequently, he could have easily been 
in contact with Islamic scholars, who were in various centres in 
Anatolia, including Bursa, the home of Qāḍīzāde al-Rūmī, one of 
Qushjī’s teachers and associates in Samarqand. Qushjī himself later 
came to Constantinople, in 1472, probably at the behest of Sultan 
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Table 7.3 Manuscript witnesses to the Ṭūsī-couple

Author Title
Date of 

composition
Manuscript 

witnesses

Naṣīr al-Dīn al-Ṭūsī Ḥall-i mushkilāt-i Muʿīniyya 
(Persian)

1245 CE 19

Naṣīr al-Dīn al-Ṭūsī Taḥrīr al-Majisṭī (Arabic) 1247 CE 93

Naṣīr al-Dīn al-Ṭūsī Al-Tadhkira fī ʿilm al-hayʾa 
(Arabic)

1261 CE 72

Quṭb al-Dīn al-Shīrāzī Nihāyat al-idrāk fī dirāyat al-
aflāk (Arabic)

1281 CE 37

Quṭb al-Dīn al-Shīrāzī Ikhtiyārāt-i Muẓaffarī (Persian) 1282 CE 10

Quṭb al-Dīn al-Shīrāzī Al-Tuḥfa al-shāhiyya fī al-hayʾa 
(Arabic)

1285 CE 49

Quṭb al-Dīn al-Shīrāzī Faʿalta fa-lā talum 
(supercommentary on the 
Tadhkira; Arabic)

ca. 1300 CE 3

Ḥasan ibn Muḥammad ibn al-
Ḥusayn Niẓām al-Dīn al-Aʿraj 
al-Nīsābūrī

Tawḍīḥ al-Tadhkira (Arabic) 1311 CE 53

ʿUmar b. Daʾūd al-Fārisī Takmīl al-Tadhkira 
(commentary on the Tadhkira; 
Arabic)

1312 CE 1

Jalāl al-Dīn Faḍl Allāh al-
ʿUbaydī

Bayān al-Tadhkira wa-tibyān 
al-tabṣira (commentary on the 
Tadhkira; Arabic) 

1328 CE 1

al-Sayyid al-Sharīf ʿAlī ibn 
Muḥammad ibn ʿAlī al-Ḥusaynī 
al-Jurjānī

Sharḥ al-Tadhkira al-Naṣīriyya 
(commentary on the Tadhkira; 
Arabic)

1409 CE 51

Fatḥ Allāh al-Shīrwānī Sharḥ al-Tadhkira 
(commentary on the Tadhkira; 
Arabic)

1475 CE 2

ʿAbd al-ʿAlī ibn Muḥammad 
ibn al-Ḥusayn al-Bīrjandī

Sharḥ al-Tadhkira 
(commentary on the Tadhkira; 
Arabic)

1507 CE 1

Shams al-Dīn Muḥammad ibn 
Aḥmad al-Khafrī

Al-Takmila fī sharḥ al-Tadhkira 
(supercommentary on the 
Tadhkira; Arabic)

1525 CE 2
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Mehmed II. Admittedly, Bessarion was hardly the person to acknowl-
edge the scientific achievements of Muslims; after all, he came to Vienna 
as a legate of Pope Pius II (Aeneas Silvius Piccolomini) in order to seek 
support for a crusade against the Turks that would recapture 
Constantinople.97 But his intense interest in reviving the Greek scien-
tific heritage in Europe would have overcome any hesitancy he may 
have had about bringing cutting-edge Islamic scientific thought to his 
young acolytes.

C o n c l u s i o n

The possible transmission of the Ṭūsī-couple to Europe confronts us 
with a number of both practical and theoretical considerations. On a 
practical level, we need to trace the origins and development of the 
 device and its appearance afterward over several centuries. As we have 
seen, it is critical that we be clear which version of the couple we are 
talking about and how it is being used. We also have needed to chart 
the  various pathways by which the couple was, or could have been, 
transmitted.

On a theoretical level, we need to deal with several implicit issues in 
what has gone before by way of conclusion. The first we can call the is-
sue of the hermetically sealed civilization. Many comments on intercul-
tural transmission have somehow assumed that after the twelfth-century 
translation movement from Arabic into Latin, the gates of transmission 
became closed, and European Christendom and Islam were sealed off 
from one another until the colonial period brought them back into 
contact, this time with the relative civilizational – but more importantly, 
military – superiority reversed. This assumption has had a number of 
historiographical consequences. Much of premodern European history, 
both medieval and early modern, is written from a Eurocentric point of 
view. In many cases, this bias may be justified since, like politics, much of 
history is local.98 However, this is not the case with all history. And here 
the insistence on an exclusively European-focused narrative can cause 
considerable distortion of the historical record. For example, discussing 
the development of trigonometry without bringing in the Indian intro-
duction of the sine and, based on this innovation, the subsequent devel-
opment of the other trigonometric functions and identities in Islamic 
mathematics leaves out an essential part of the story.99 In the case of 
much postclassical (i.e., post-1200 CE) Islamic science, the assumption 
is made that Europeans would have had little contact because of cultur-
al and linguistic differences. But this assumption by European intellec-
tual historians is belied by the extensive evidence of political, economic, 
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and cultural exchanges between various late-Islamic regimes and 
European realms.100 European travellers did go to various regions of 
the Islamic world before the modern period, and there are certainly ex-
amples of Islamicate travellers in Europe.101 But more to the point, it is 
also clear that Islamic scientific theories and objects did travel to 
Europe, as we have seen, through contacts such as those between Spain 
and Īlkhānid Iran, through Jewish intermediaries, and through 
Byzantine scholars and émigrés.

The above-mentioned research by Langermann and Morrison, as well 
as by İhsan Fazlıoğlu and other historians of the Ottoman period, points 
to something often overlooked, namely the important role of the Otto-
man courts of Mehmed II, who was the conqueror of Constantinople, 
and of his son and successor Bāyazīd II in promoting scientific and phil-
osophical study, which included providing patronage for Christian and 
Jewish, as well as Muslim, scholars. Many of these Christian and Jewish 
scholars travelled readily between the Ottoman and Christian realms.102 
And it should not be forgotten that, at the time, the Ottomans were a 
European power, with vast domains in eastern and central Europe, and 
had been such since the fourteenth century.

But there may have been more direct contact. Here, one needs to 
confront the myth of a linguistically impoverished Europe; even schol-
ars sympathetic to transmission such as Swerdlow and Neugebauer feel 
compelled to remark that “[a] direct transmission of the Arabic [texts 
containing the non-Ptolemaic models used by Copernicus] is of course 
extremely unlikely.”103 But why “of course”? Some Europeans did know 
Arabic (how else could the twelfth-century translation movement have 
taken place?), and there is research showing that knowledge of Arabic 
was not unknown during the Renaissance.104 At this point in our knowl-
edge, we can only speculate that European astronomers either learned 
Arabic or worked with translators who did know enough to explain the 
non-Ptolemaic models of Ṭūsī, Ibn al-Shāṭir, and others. But it seems to 
me equally speculative to assume they did not. After all, Arabic is not 
all that esoteric – it is closely related to Hebrew, which was certainly 
studied by numerous European Christian scholars – and there were 
dictionaries and grammars available. And perhaps most importantly, 
why would someone seek to start from scratch when it was certainly 
known in the fifteenth and sixteenth centuries that Islamic astronomers 
still had much to teach their European counterparts?105 But more gen-
erally from a historiographical point of view, it seems odd that so many 
European historians of the medieval and early modern periods have 
written histories that make their subjects seem isolated, devoid of curios-
ity, and impervious to outside influences.106
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The next theoretical point to pursue is the question of “how much evi-
dence is enough.” It is a commonplace in the history of science to trace 
intercultural transmission through the reappearance of numbers, ob-
jects, models, propositions, and even ideas that we can locate in an 
 earlier source. In fact, one might consider it our most precise way to 
document intercultural transmission. The gold standard in our field is 
arguably Hipparchus of Nicaea’s value for the mean synodic month (re-
ported by Ptolemy), namely 29;31,50,8,20 days (sexagesimal). Once 
Franz Kugler demonstrated in the 1890s that this value came from what 
is now known as Babylonian System B, the argument for Greek knowl-
edge and use of Babylonian astronomy (at least its parameters) became 
incontestable. The same is also true of the fact that Hipparchus, despite 
what is reported by Ptolemy, did not make a recalculation using new ob-
servations. But why can we reach these conclusions? The answer is obvi-
ous. Would anyone seriously argue that two identical values to the fourth 
sexagesimal place is a coincidence? According to Di Bono and Goddu, 
the appearance of Ṭūsī’s couple, Muʾayyad al-Dīn al-ʿUrḍī’s lemma, Ibn 
al-Shāṭir’s models, and so on in the work of Copernicus is not sufficient 
to prove transmission. But what makes this case different from the case 
of Hipparchus’s value for the mean synodic month? The case made by 
Di Bono, and echoed by Goddu, is that somehow the “internal logic” is 
such that anyone confronting the problem of Ptolemy’s irregular mo-
tions would come up with the same solutions.107 But Di Bono makes it 
clear that his criteria for accepting transmission are so high that even a 
“high number of coincidences between Copernican and Arab models” is 
insufficient since it then “becomes very difficult to explain how such a 
quantity of models and information, which Copernicus would derive 
from Arab sources, has left no trace – apart from Ṭūsī’s device – in the 
works of the other western astronomers of the time.”108 This argument 
is a curious one; given the tenuous nature of transmission, an insis-
tence on multiple examples would render many cases moot, even one as 
strong as the transmission of the Babylonian synodic month.

Let us now turn to the issue of “internal logic” and parallel develop-
ment. In fact, what we have in Islam and in the Latin West represent two 
very different historical developments. The criticism of Ptolemy on vari-
ous fronts, including observational ones, begins quite early in Islam;109 
and certainly by the time of Ibn al-Haytham (d. ca. 1040), we have sus-
tained criticisms of the irregularities in Ptolemy’s planetary models.110 
By the thirteenth century, we see a number of attempts to deal with 
these criticisms by using alternative models that employ devices consist-
ing of uniformly rotating spheres, those of Ṭūsī, ʿUrḍī, and Shīrāzī being 
the most prominent; the proposal of alternative models continues for 
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several centuries in Islam. It is important to emphasize that this histori-
cal development is sustained and traceable; Ṭūsī and his successors 
knew of earlier criticisms and alternative models, and they explicitly 
sought to build upon their predecessors. This long-term historical pro-
cess is precisely what is missing in the accounts of those who advocate a 
“parallel development” in the Latin West. As we have seen, the Ṭūsī-
couple appears there in fits and starts; we do not find a sustained dis-
cussion of the “equant problem” before Copernicus,111 and we certainly 
do not see a sustained, historically coherent development of alternative 
models. Here, the evolution of Ṭūsī’s various couples is instructive; from 
the initial discussion of the problem and announcement of a solution 
until he put forth his “final” versions, Ṭūsī took twenty-five years, during 
which he presented various models that he would later revise. But in 
the Latin case, there is no one about whom a story exists that can ac-
count for the rationale and development – indeed, the “logic” – for one 
or more versions of the Ṭūsī-couple. As we have seen, they just somehow 
appear. And no one after Ṭūsī claims to have independently discovered 
any of the versions of the couple, either in the Islamic world or in the 
Latin West.112

In their different scenarios, both Di Bono and Goddu have attempted 
to provide alternative “stories,” but these are deeply flawed. Di Bono 
seeks to find the source for Copernicus’s use of the Ṭūsī-couple in the 
Paduan Aristotelian-Averroist critiques of Ptolemy. But the problem 
here is that such critiques generally led to quite different homocentric 
modelling based on a variety of techniques that are quite distinct from 
those of Ṭūsī and his successors. In particular, Di Bono makes no at-
tempt to explain how Copernicus could have used the epicycle-only 
modelling of Ibn al-Shāṭir if he had been so influenced by astronomers 
and natural philosophers adamantly opposed to epicycles and eccen-
trics.113 In the case of an astronomer who did come out of that tradition 
and who did use one version of the Ṭūsī-couple, namely Amico, we have 
an astronomy quite different from that of Copernicus. As for Goddu’s 
attempt to locate Copernicus’s discovery and use of the Ṭūsī-couple in 
the Aristotelian environment of Cracow, here we have what amounts to 
a misunderstanding. As we have seen, Brudzewo, whom Goddu wishes 
to make the immediate predecessor for Copernicus’s use of the couple, 
is in fact using Ibn al-Haytham’s Eudoxan-couple. It is true that 
Brudzewo does mention it in the context of the motion of the epicyclic 
apogee due to the Moon’s prosneusis point, which, interestingly enough, 
is one of the examples Ṭūsī uses to explain the need for the curvilinear 
version of his couple.114 But again, neither Brudzewo nor anyone else 
adduced by Goddu proposes a Ṭūsī-couple device for dealing with the 
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problem.115 In sum, both Di Bono and Goddu depend on tenuous con-
nections that would have us believe that their actors can move from 
model to model without clear agency or plausible historical context. 
And it is this stark contrast – between, on the one hand, Islamic astrono-
my’s well-developed historical context for dealing with the irregular mo-
tions of Ptolemaic astronomy and, on the other hand, the Latin West’s 
ad-hoc, episodic, and decontextualized “parallel” attempts – that in my 
opinion provides us with the most compelling argument for transmis-
sion of non-Ptolemaic models such as the Ṭūsī-couple from Islam to 
Europe before the sixteenth century.116

Given what we know, it seems that one possible scenario is that 
 Copernicus was indeed influenced by Brudzewo’s comments to pursue 
the problem of the Moon’s epicyclic apogee. And perhaps he realized at 
some point that what was needed was a curvilinear oscillation on the 
epicycle’s circumference, as Ṭūsī had before him. Then, while in Italy, 
he somehow encountered, through one of the routes outlined above, 
one or more versions of the Ṭūsī-couple that he would subsequently 
use. But it is also clear that he was not overly interested in the com-
plexities of the models, which would account for his use of the apoco-
pated two-sphere (as opposed to the full three-sphere) version in the 
Commentariolus. And by the time of composing De revolutionibus, he was 
willing to make a further simplification by using Ṭūsī’s two-circle ver-
sion even though it did not fulfil the need either for a full-scale physi-
cal model for rectilinear motion or for a version that could produce 
true curvilinear oscillation.

In summary, it seems that, as put so perceptively by Dobrzycki and 
Kremer, “We may be looking for a means of transmission both more 
fragmentary and widespread than a single treatise.”117 And certainly by 
the time Copernicus wrote De revolutionibus, one version or another of 
the Ṭūsī-couple would have been available in the Latin West for several 
centuries; in other words, it had become commonplace. So perhaps 
Copernicus, the man from Toruń, felt no need to worry about its ori-
gins, whether in Tūn or elsewhere, and could, without qualms, cross out 
the redundant remark in his holograph that “some people call this the 
‘motion along the width of a circle.’”118
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c h a p t e r  s e v e n

1 F.J. Ragep, “Copernicus.” This point is made even more forcefully in my 
“Ibn al-Shāṭir and Copernicus: The Uppsala Notes Revisited,” where I main-
tain that there is a stronger connection between ʿAlāʾ al-Dīn ibn al-Shāṭir 
(fourteenth century) and Copernicus’s models and heliocentrism than has 
been previously claimed.

2 Here, we need to acknowledge Mario Di Bono, who, in a valuable article, in-
sists on distinguishing the various versions of the Ṭūsī-couple. Di Bono, “Coper-
nicus, Amico, Fracastoro.” Di Bono is building on the earlier work of Noel 
Swerdlow, especially his “Aristotelian Planetary Theory in the Renaissance.”

3 On Risālah-i Muʿīniyya, see F.J. Ragep, “Persian Context,” and Naṣīr al-Dīn 
al-Ṭūsī’s Memoir, vol. 1, 65–6. See also Kennedy, “Two Persian Astronomical 
Treatises.”

4 The relevant parts of the Persian text discussed in this paragraph, along 
with translation, are in F.J. Ragep, “Persian Context,” 123–5.

5 F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 1, 208.
6 The name “Dhayl-i Muʿīniyya” is found in the only dated manuscript of 

Ṭūsī’s text, namely Tashkent, Uzbekistan, Al-Biruni Institute of Oriental 
Studies, MS 8990, fols 1a, 33a, 33b.

7 Ṭūsī, Dhayl-i Muʿīniyya, Tashkent, Al-Biruni Institute of Oriental Studies, MS 
8990, fol. 46a (original foliation):

نف رفع الله مراتبه في معارج القدس من تالٔیفه أوائل جمادى اتفق فراغ المص  تمت الرسا�
  هجریة بمقام ب�ة تون بال�س�تان المعروف بباغ �ركه  ۶۴۳ الاخٓرة س�نة

  
او هم �ر  عایل �ر سمت مركزش وبعد از انٓ رجو اما اس�تقامت حركت مركز تدو�ر از محیط م

انٓ سمت � بمحیط رس�یدن بى آ�كه خرقى و التیامى لازم ایٓد � �ل� باس�تدارت حركات راه 
   �بذ �ر انٓ وجه تواند بود كه �د كنيم.

  
ٮ} �ير مق�ع في هذا الموضع فإنّ من الواجب �� 201هذا �م �ارج من الصنا�ة { أقول

صاحب هذه الصنا�ة أن یضع دوائر وأجراماً ذوات حركات م�شابهة �� نضد و�رت�ب 
یتركّب من جمیعها هذه الحركات المحسوسة ا�تلفة ثم إنّ كون هذه الحركات �� محیط ا�وائر 

�� خروج أقطار التداو�ر عن سطوح الخارجة المراكز في العرض شمالاً الصغار المذكورة كما تق 
وج�وبًا كذ� تق�� خرو�ا عن محاذاة مركز البروج أو موازاة أقطار �� سطح البروج 

مخالف للوجود ولا يمكن أن  باعٔیانها في الطول إق�الاً وإدباراً بقدر ت� العروض باعٔیانها وذ�
سوس في العرض و�ير محسوس في الطول ل�ساويهما في المقدار والبعد نّ ذ� التفاوت مح إ یقال 

من مركز البروج فإن جعل قطر ا�ائرة الصغيرة بقدر جمیع العرض في إ�دى الجهتين وتوهمّ أنّ 
مركزها یتحرّك �� محیط دائرة أخرى مساویة لها مركزها في سطح الخارج المركز بقدر نصف 

  یط ا�ائرة الٔاولى وإلى �لاف ��ا �دث الانتقال إلى حركة طرف قطر التدو�ر �� مح 
 اٮالشمال والجنوب بقدر العرض من �ير أن يحدث في الطول تقدّم وتاخّٔر ولیكن لبیانه 

  ز هو  هة بطرف قطر التدو�ر وقد تقاطعا �� من دائرة العرض المارّ دجقطعة من الخارج و
ه ز و�� هح دائرة هح نصفه في إ�ديهما و�ر� �� ح ببعد هرض في الجهتين وم جمیع العه

ز في هدائرة ح ط ك ل ونتوهمّ طرف قطر التدو�ر �� نقطة ز م�حرّكاً �� دائرة ه ببعد ح
إلى ا نصف ت� الحركة ج إلى ٮ ومركز ح م�حرّكاً �� دائرة ح ط ك ل في �ة ج �ة 

ثم إذا قطع ح ربعاً اخٓر ه وا���� إلى ط قطع ز نصفاً وا���� إلى فظاهر أنهّ إذا قطع ح ربعاً 
آ} إلى م وإذا قطع ح ربعاً �لثاً وا���� إلى ل قطع 202وا���� إلى ك قطع ز نصفاً اخٓر وا���� {

وإذا تمّ ح دورة �اد ز إلى موضعه الٔاول فهو دائماً یتردّد ف� بين  هز نصفاً اخٓر وا���� �نیاً إلى 
طّ ج د �ير مائل عنه إلى �� اب فهذا بیان هذا الوجه ولكن یلزم �لیه أن �كون زم �� خ

زمان كون القطر في الشمال مساوً� لزمان كونه في الجنوب والوجود بخلاف ذ� وأمّا القول 
بحركته �� محیط دائرة حول نقطة �ير مركزها �� ما ذكر بطلمیوس فمحتاج إلى نظر يحققّه 

 ود إلى الك�اب�� ما مرّ ونع
 

 هابطة �� سمت قطرالسكون بين حركتين صا�دة و  عكن أن يجعل هذا دلیلاً �� ام�ناويم
  ن أقطار الٔارضم

8 On Tūn as one of the residences of the local Ismāʿīlī rulers, see Daftary, 
“Dāʿī,” 592, col. 1.

9 Ṭūsī, Ḥall-i mushkilāt-i Muʿīniyya, 7:

نف رفع الله مراتبه في معارج القدس من تالٔیفه أوائل جمادى اتفق فراغ المص  تمت الرسا�
  هجریة بمقام ب�ة تون بال�س�تان المعروف بباغ �ركه  ۶۴۳ الاخٓرة س�نة

  
او هم �ر  عایل �ر سمت مركزش وبعد از انٓ رجو اما اس�تقامت حركت مركز تدو�ر از محیط م

انٓ سمت � بمحیط رس�یدن بى آ�كه خرقى و التیامى لازم ایٓد � �ل� باس�تدارت حركات راه 
   �بذ �ر انٓ وجه تواند بود كه �د كنيم.

  
ٮ} �ير مق�ع في هذا الموضع فإنّ من الواجب �� 201هذا �م �ارج من الصنا�ة { أقول

صاحب هذه الصنا�ة أن یضع دوائر وأجراماً ذوات حركات م�شابهة �� نضد و�رت�ب 
یتركّب من جمیعها هذه الحركات المحسوسة ا�تلفة ثم إنّ كون هذه الحركات �� محیط ا�وائر 

�� خروج أقطار التداو�ر عن سطوح الخارجة المراكز في العرض شمالاً الصغار المذكورة كما تق 
وج�وبًا كذ� تق�� خرو�ا عن محاذاة مركز البروج أو موازاة أقطار �� سطح البروج 

مخالف للوجود ولا يمكن أن  باعٔیانها في الطول إق�الاً وإدباراً بقدر ت� العروض باعٔیانها وذ�
سوس في العرض و�ير محسوس في الطول ل�ساويهما في المقدار والبعد نّ ذ� التفاوت مح إ یقال 

من مركز البروج فإن جعل قطر ا�ائرة الصغيرة بقدر جمیع العرض في إ�دى الجهتين وتوهمّ أنّ 
مركزها یتحرّك �� محیط دائرة أخرى مساویة لها مركزها في سطح الخارج المركز بقدر نصف 

  یط ا�ائرة الٔاولى وإلى �لاف ��ا �دث الانتقال إلى حركة طرف قطر التدو�ر �� مح 
 اٮالشمال والجنوب بقدر العرض من �ير أن يحدث في الطول تقدّم وتاخّٔر ولیكن لبیانه 

  ز هو  هة بطرف قطر التدو�ر وقد تقاطعا �� من دائرة العرض المارّ دجقطعة من الخارج و
ه ز و�� هح دائرة هح نصفه في إ�ديهما و�ر� �� ح ببعد هرض في الجهتين وم جمیع العه

ز في هدائرة ح ط ك ل ونتوهمّ طرف قطر التدو�ر �� نقطة ز م�حرّكاً �� دائرة ه ببعد ح
إلى ا نصف ت� الحركة ج إلى ٮ ومركز ح م�حرّكاً �� دائرة ح ط ك ل في �ة ج �ة 

ثم إذا قطع ح ربعاً اخٓر ه وا���� إلى ط قطع ز نصفاً وا���� إلى فظاهر أنهّ إذا قطع ح ربعاً 
آ} إلى م وإذا قطع ح ربعاً �لثاً وا���� إلى ل قطع 202وا���� إلى ك قطع ز نصفاً اخٓر وا���� {

وإذا تمّ ح دورة �اد ز إلى موضعه الٔاول فهو دائماً یتردّد ف� بين  هز نصفاً اخٓر وا���� �نیاً إلى 
طّ ج د �ير مائل عنه إلى �� اب فهذا بیان هذا الوجه ولكن یلزم �لیه أن �كون زم �� خ

زمان كون القطر في الشمال مساوً� لزمان كونه في الجنوب والوجود بخلاف ذ� وأمّا القول 
بحركته �� محیط دائرة حول نقطة �ير مركزها �� ما ذكر بطلمیوس فمحتاج إلى نظر يحققّه 

 ود إلى الك�اب�� ما مرّ ونع
 

 هابطة �� سمت قطرالسكون بين حركتين صا�دة و  عكن أن يجعل هذا دلیلاً �� ام�ناويم
  ن أقطار الٔارضم

 “The rectilinear motion of the center of the epicycle away from the circum-
ference of the inclined [orb] in the direction of its centre and then its re-
turn on that same line until it reaches the circumference – without there 
being any tearing and mending, or any rupture in the circular motions – 
can be in the way we shall mention.”

10 See F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 1, 208–23, vol. 2, 
448–56.

11 The relevant passages from Risālah-i Muʿīniyya, book 2, chs 5, 6, 8, with 
English translation, can be found in F.J. Ragep, “Persian Context,” 123–5.
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12 For details and an edition and translation of the relevant chapter from the 
Ḥall, see F.J. Ragep, “Ibn al-Haytham and Eudoxus.”

13 This chronology contradicts George Saliba’s contention, followed by Di 
Bono and others, that the two-equal-circle version in Taḥrīr al-Majisṭī was the 
first occurrence of any version of the Ṭūsī-couple. But clearly the new dating 
of the Ḥall should put to rest this earlier proposal. Compare Saliba, “Role of 
the Almagest Commentaries.”

14 This comment corresponds to the Almagest, book 13, ch. 2; Ptolemy, 
Ptolemy’s Almagest, 599-601.

15 Ṭūsī, Taḥrīr al-Majisṭī, fols 201a–202a:

نف رفع الله مراتبه في معارج القدس من تالٔیفه أوائل جمادى اتفق فراغ المص  تمت الرسا�
  هجریة بمقام ب�ة تون بال�س�تان المعروف بباغ �ركه  ۶۴۳ الاخٓرة س�نة

  
او هم �ر  عایل �ر سمت مركزش وبعد از انٓ رجو اما اس�تقامت حركت مركز تدو�ر از محیط م

انٓ سمت � بمحیط رس�یدن بى آ�كه خرقى و التیامى لازم ایٓد � �ل� باس�تدارت حركات راه 
   �بذ �ر انٓ وجه تواند بود كه �د كنيم.

  
ٮ} �ير مق�ع في هذا الموضع فإنّ من الواجب �� 201هذا �م �ارج من الصنا�ة { أقول

صاحب هذه الصنا�ة أن یضع دوائر وأجراماً ذوات حركات م�شابهة �� نضد و�رت�ب 
یتركّب من جمیعها هذه الحركات المحسوسة ا�تلفة ثم إنّ كون هذه الحركات �� محیط ا�وائر 

�� خروج أقطار التداو�ر عن سطوح الخارجة المراكز في العرض شمالاً الصغار المذكورة كما تق 
وج�وبًا كذ� تق�� خرو�ا عن محاذاة مركز البروج أو موازاة أقطار �� سطح البروج 

مخالف للوجود ولا يمكن أن  باعٔیانها في الطول إق�الاً وإدباراً بقدر ت� العروض باعٔیانها وذ�
سوس في العرض و�ير محسوس في الطول ل�ساويهما في المقدار والبعد نّ ذ� التفاوت مح إ یقال 

من مركز البروج فإن جعل قطر ا�ائرة الصغيرة بقدر جمیع العرض في إ�دى الجهتين وتوهمّ أنّ 
مركزها یتحرّك �� محیط دائرة أخرى مساویة لها مركزها في سطح الخارج المركز بقدر نصف 

  یط ا�ائرة الٔاولى وإلى �لاف ��ا �دث الانتقال إلى حركة طرف قطر التدو�ر �� مح 
 اٮالشمال والجنوب بقدر العرض من �ير أن يحدث في الطول تقدّم وتاخّٔر ولیكن لبیانه 

  ز هو  هة بطرف قطر التدو�ر وقد تقاطعا �� من دائرة العرض المارّ دجقطعة من الخارج و
ه ز و�� هح دائرة هح نصفه في إ�ديهما و�ر� �� ح ببعد هرض في الجهتين وم جمیع العه

ز في هدائرة ح ط ك ل ونتوهمّ طرف قطر التدو�ر �� نقطة ز م�حرّكاً �� دائرة ه ببعد ح
إلى ا نصف ت� الحركة ج إلى ٮ ومركز ح م�حرّكاً �� دائرة ح ط ك ل في �ة ج �ة 

ثم إذا قطع ح ربعاً اخٓر ه وا���� إلى ط قطع ز نصفاً وا���� إلى فظاهر أنهّ إذا قطع ح ربعاً 
آ} إلى م وإذا قطع ح ربعاً �لثاً وا���� إلى ل قطع 202وا���� إلى ك قطع ز نصفاً اخٓر وا���� {

وإذا تمّ ح دورة �اد ز إلى موضعه الٔاول فهو دائماً یتردّد ف� بين  هز نصفاً اخٓر وا���� �نیاً إلى 
طّ ج د �ير مائل عنه إلى �� اب فهذا بیان هذا الوجه ولكن یلزم �لیه أن �كون زم �� خ

زمان كون القطر في الشمال مساوً� لزمان كونه في الجنوب والوجود بخلاف ذ� وأمّا القول 
بحركته �� محیط دائرة حول نقطة �ير مركزها �� ما ذكر بطلمیوس فمحتاج إلى نظر يحققّه 

 ود إلى الك�اب�� ما مرّ ونع
 

 هابطة �� سمت قطرالسكون بين حركتين صا�دة و  عكن أن يجعل هذا دلیلاً �� ام�ناويم
263  ن أقطار الٔارضم
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16 The unequal times in the Almagest occur because this motion in latitude is 
coordinated with the irregular motion, brought about by the equant, of the 
epicycle centre on the deferent. F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, 
vol. 2, 455.

17 Ibid., vol. 1, 216–21.
18 For a fuller account of the curvilinear version, see ibid., vol. 2, 453–6. It 

should be noted that the curvilinear version does not in fact produce mo-
tion on a great circle arc; there is a small discrepancy resulting in a narrow, 
pinched figure-eight motion. This was noticed by at least one commentator 
on the Tadhkira, Shams al-Dīn al-Khafrī (fl. 1525 CE). But the maximum 
deviation from a great circle arc, which occurs when using the curvilinear 
version to deal with the problem of the Moon’s prosneusis, is only 0.214°, 
which is about 0.87 per cent. Ibid., vol. 2, 455n55, 455n56. For an illustra-
tion of the deviation, see figure C26, in ibid., vol. 1, 361.

19 The purpose of Ibn al-Haytham’s proposal was to provide a physical basis 
for the circular path of the epicycle apex A in Ptolemy’s latitude theory; as 
far as is known, he was not concerned with the resultant motion of S, which 
traces a “hippopede” in Eudoxus of Cnidus’s theory (as shown in figure 7.9). 
It is interesting that Regiomontanus’s version of this device resulted in a 
curvilinear oscillation of S along a great circle arc, something that had been 
proposed earlier by Joseph ibn Naḥmias. For details, see Morrison, chap-
ter 8, this volume, especially figure 8.3. For the reason that the Eudoxan-
couple should produce a hippopede, not a curvilinear oscillation, see 
Neugebauer, “On the ‘Hippopede’ of Eudoxus.”

20 F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 1, 220–3.
21 Shīrāzī, Al-Tuḥfa al-shāhiyya, fol. 34a:

نف رفع الله مراتبه في معارج القدس من تالٔیفه أوائل جمادى اتفق فراغ المص  تمت الرسا�
  هجریة بمقام ب�ة تون بال�س�تان المعروف بباغ �ركه  ۶۴۳ الاخٓرة س�نة

  
او هم �ر  عایل �ر سمت مركزش وبعد از انٓ رجو اما اس�تقامت حركت مركز تدو�ر از محیط م

انٓ سمت � بمحیط رس�یدن بى آ�كه خرقى و التیامى لازم ایٓد � �ل� باس�تدارت حركات راه 
   �بذ �ر انٓ وجه تواند بود كه �د كنيم.

  
ٮ} �ير مق�ع في هذا الموضع فإنّ من الواجب �� 201هذا �م �ارج من الصنا�ة { أقول

صاحب هذه الصنا�ة أن یضع دوائر وأجراماً ذوات حركات م�شابهة �� نضد و�رت�ب 
یتركّب من جمیعها هذه الحركات المحسوسة ا�تلفة ثم إنّ كون هذه الحركات �� محیط ا�وائر 

�� خروج أ ال   الخارجة المراكز في العرض شمالاً الصغار المذكورة كما تق 
وج�وبًا كذ� تق�� خرو�ا عن  أقطار �� سطح البروج 

مخالف للوجود ولا يمكن أن  باعٔیانها في الطول إق�الاً وإدباراً بقدر ت� العروض باعٔیانها وذ�
سوس في العرض و�ير محسوس في الطول ل�ساويهما في المقدار والبعد نّ ذ� التفاوت مح إ یقال 

من مركز البروج فإن جعل قطر ا�ائرة الصغيرة بقدر جمیع العرض في إ�دى الجهتين وتوهمّ أنّ 
مركزها یتحرّك �� محیط دائرة أخرى مساویة لها مركزها في سطح الخارج المركز بقدر نصف 

  یط ا�ائرة الٔاولى وإلى �لاف ��ا �دث الانتقال إلى حركة طرف قطر التدو�ر �� مح 
 اٮالشمال والجنوب بقدر العرض من �ير أن يحدث في الطول تقدّم وتاخّٔر ولیكن لبیانه 

  ز هو  هة بطرف قطر التدو�ر وقد تقاطعا �� من دائرة العرض المارّ دجقطعة من الخارج و
ه ز و�� هح دائرة هح نصفه في إ�ديهما و�ر� �� ح ببعد هرض في الجهتين وم جمیع العه

ز في هدائرة ح ط ك ل ونتوهمّ طرف قطر التدو�ر �� نقطة ز م�حرّكاً �� دائرة ه ببعد ح
إلى ا نصف ت� الحركة ج إلى ٮ ومركز ح م�حرّكاً �� دائرة ح ط ك ل في �ة ج �ة 

ثم إذا قطع ح ربعاً اخٓر ه وا���� إلى ط قطع ز نصفاً وا���� إلى فظاهر أنهّ إذا قطع ح ربعاً 
آ} إلى م وإذا قطع ح ربعاً �لثاً وا���� إلى ل قطع 202وا���� إلى ك قطع ز نصفاً اخٓر وا���� {

وإذا تمّ ح دورة �اد ز إلى موضعه الٔاول فهو دائماً یتردّد ف� بين  هز نصفاً اخٓر وا���� �نیاً إلى 
طّ ج د �ير مائل عنه إلى �� اب فهذا بیان هذا الوجه ولكن یلزم �لیه أن �كون زم �� خ

زمان كون القطر في الشمال مساوً� لزمان كونه في الجنوب والوجود بخلاف ذ� وأمّا القول 
بحركته �� محیط دائرة حول نقطة �ير مركزها �� ما ذكر بطلمیوس فمحتاج إلى نظر يحققّه 

 ود إلى الك�اب�� ما مرّ ونع
 

 هابطة �� سمت قطرالسكون بين حركتين صا�دة و  عكن أن يجعل هذا دلیلاً �� ام�ناويم
  ن أقطار الٔارضم

22 Langermann, “Quies Media,” provides an excellent summary of the quies 
media question and discusses a number of Islamic thinkers, including 
Shīrāzī, who dealt with it.

23 The restriction of the date will exclude a discussion of the translation into 
Sanskrit of part of ʿAbd al-ʿAlī al-Birjandī’s (d. 1525–26) commentary on 
Ṭūsī’s Tadhkira, the part containing the presentation of the Ṭūsī-couple. 
On this translation, see Kusuba and Pingree, Arabic Astronomy in Sanskrit.

24 On the use of aṣl to translate the Greek term hypothesis, see Morrison, chap-
ter 8, this volume, note 10.

25 These works are currently extant in three codices, two in the Vatican and 
one in the Biblioteca Medicea Laurenziana in Florence.

26 Edition and translation in Paschos and Sotiroudis, Schemata of the Stars, 
26–53.
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27 This resemblance was first recognized by Otto Neugebauer, who repro-
duced diagrams from Vatican Gr. 211, fol. 116r, in his History, part 3, 1456.

28 F.J. Ragep, “New Light on Shams.”
29 This use of the earlier works can most easily be established from the list of 

star names found in Paschos and Sotiroudis, Schemata of the Stars, 30–7. For 
a discussion and the evidence, see F.J. Ragep, “New Light on Shams,” 239, 
241–2.

30 It was reported that there was great reluctance by the Persians to teach as-
tronomy to a Byzantine because of a legend that doing so would lead to the 
former’s demise. F.J. Ragep, “New Light on Shams,” 231–2.

31 Paschos and Sotiroudis, Schemata of the Stars, 42–5. On the Ḥall, see above 
and F.J. Ragep, “New Light on Shams,” 242.

32 David Pingree states that Vatican Gr. 211 is listed in the Vatican inventory of 
1475 and that Vatican Gr. 1058 is listed in the inventory made around 1510 
but may well have been in the collection earlier. Pingree, Astronomical Works, 
vol. 1, 23, 25.

33 See above and F.J. Ragep, “Ibn al-Haytham and Eudoxus.”
34 Langermann, “Medieval Hebrew Texts,” 34.
35 Droppers, “Questiones de Spera,” 462–4; Kren, “Rolling Device.”
36 Goddu, Copernicus, 481, 484.
37 The parts of Kren’s translation in “Rolling Device,” 490, that have been 

changed are in italics; my suggested revisions are in brackets immediately 
following. Droppers, “Questiones de Spera,” 285, 287, 289, also provides 
a translation, somewhat more literal than Kren’s, that I have also taken 
into account.

38 Here is Kren’s Latin version in “Rolling Device,” 491n3 (compare Droppers, 
“Questiones de Spera,” 284, 286, 288):

 Circa hanc questionem, pono 3 pulcras conclusiones. Prima est quod possi-
bile est quod aliquis planeta secundum quodlibet sui moveatur in perpetu-
um motu recto composito ex pluribus motibus circularibus, ita quod iste 
motus proveniat a pluribus intelligentiis quarum quelibet intenderet move-
re motu circulari nec frustratur ab intentione sua.

  Pro cuius probatione, suponatur per ymaginationem, sicut faciunt astrolo-
gi, quod A sit circulus deferens alicuius planete, vel centrum eius, et sit B 
circulus epiciclus eiusdem planete, et C sit corpus planete vel centrum eius; 
hoc habeo pro eodem. Et ymaginetur linea BC, exiens de centro epicicli ad 
centrum planete, et CD sit linea in planeta supra quam alia cadat perpen-
diculariter. Moveatur etiam A circulus supra centrum ad orientem, et B ad 
occidentem, et C planeta supra centrum suum volvatur ad orientem. Cum 
ergo linea BC semper sit equalis, quia est semidyameter, ponatur quod quan-
tum B descendit ad motum deferentis, tantum C punctus ascendat per mo-
tum epicicli. Ex quo patet intuenti quod punctus C per aliquod certum 
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tempus movebitur super lineam rectam. Tunc ponatur ultra quod perifora 
qua punctus B ascenderet motu suo tantum descendat motu planete. Et pa-
tet iterum quod punctus D continue movebit in eadem linea. Ergo totum 
corpus planete movebitur motu recto usque ad aliquem terminum, et 
iterum poterit reverti in motu consimilli.

39 Figure 7.10 is from Droppers, “Questiones de Spera,” 287, reproduced by 
Goddu, Copernicus, 481. Note that despite the use of corpus in referring to 
the planet, Goddu insists that “there is no indication that Oresme was dir-
ectly concerned with the physical characteristics of the bodies or the mech-
anisms” (481). This interpretation of Oresme may be why both Droppers 
and Goddu seem capable of ignoring Oresme’s clear statement that it is 
the “entire body of the planet” that moves in a straight line. We should also 
note here that the title of this questio is “Whether any heavenly body (corpus 
celeste) is moved circularly.”

40 Kren, “Rolling Device,” 492.
41 In contrast, Goddu, Copernicus, 480, finds Kren’s reconstruction “implaus-

ible,” but this assessment seems to be based on the grounds that Ṭūsī’s 
 construction requires two circles whereas Oresme’s requires three. He ap-
parently is unaware of Ṭūsī’s physicalization of his geometrical device and 
his explicit use of three spheres in the Tadhkira. F.J. Ragep, Naṣīr al-Dīn al-
Ṭūsī’s Memoir, vol. 1, 200–1, 350–1, vol. 2, 435–7. Kren is able to see this use 
of three spheres even though she was depending, as mentioned, on an ear-
lier French translation of this passage in which Ṭūsī describes how to physic-
alize his device. Kren, “Rolling Device,” 493n8. Goddu had access to a new 
translation and discussion of this passage in the Tadhkira, so his claim that 
Ṭūsī does not have a three-sphere model is odd.

42 What follows is a modified version of what is described in the Tadhkira, 
book 2, ch. 11, para. 4. F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 1, 200–1; 
see also fig. C13, in ibid., vol. 1, 351. For a discussion of this passage, see 
ibid., vol. 2, 435–8.

43 Droppers, “Questiones de Spera,” 291.
44 See Morrison, chapter 8, this volume.
45 Dobrzycki and Kremer, “Peurbach and Marāgha.”
46 Aiton, “Peurbach’s Theoricae novae planetarum,” 36, 36n118.
47 Dobrzycki and Kremer, “Peurbach and Marāgha,” 233n53.
48 Dobrzycki, “Theory of Precession,” 51.
49 In addition to the previous reference, see also Dobrzycki, “Astronomical 

Aspects,” 122; and Räumer, “Johannes Werners Abhandlung.”
50 On Amico, see Swerdlow, “Aristotelian Planetary Theory”; and Di Bono, 

Le sfere omocentriche.
51 Ṭūsī refers to this third as “the enclosing sphere” (al-kura al-muḥīṭa). F.J. 

Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 1, 220–1. Amico calls it a “with-
standing (obsistens) sphere.” Swerdlow, “Aristotelian Planetary Theory,” 41.
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52 Di Bono, “Copernicus, Amico, Fracastoro,” 141. Ṭūsī does not mention 
this problem, but it is mentioned by at least one commentator on the 
Tadhkira. See F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 2, 455; and 
note 18 above.

53 Di Bono, “Copernicus, Amico, Fracastoro,” 143–4.
54 Swerdlow and Neugebauer, Mathematical Astronomy, part 1, 47.
55 Here, we follow the lead of Di Bono, “Copernicus, Amico, Fracastoro,” 

esp. 138–41.
56 Swerdlow and Neugebauer, Mathematical Astronomy, part 1, 136.
57 Swerdlow, “Derivation and First Draft,” 483, 497.
58 Ibid., 503.
59 See Di Bono, “Copernicus, Amico, Fracastoro,” 140–1.
60 I do not deal here with all the “transmission skeptics” but focus only on the 

ones who have dealt specifically, using original ideas, with the transmission 
of the Ṭūsī-couple to medieval and early modern Europe. In particular, I do 
not consider here the derivative arguments of Viktor Blåsjö in “A Critique 
of the Arguments for Maragha Influence,” 185–6, or those of Michel-Pierre 
Lerner and Alain-Philippe Segonds in their translation of Copernicus, De 
revolutionibus (Des révolutions), vol. 1, 551–7. Likewise, I do not deal with 
André Goddu’s response to criticisms by Peter Barker and Matjaž Vesel 
of his handling of the issue of transmission of Islamic astronomy to 
Copernicus since it is not germane to my own criticisms contained here. 
Goddu, “Response to Peter Barker,” 251–4.

61 Swerdlow and Neugebauer, Mathematical Astronomy, part 1, 47. The em-
phatic way that this acceptance of late-Islamic influence is stated is most 
likely due more to Swerdlow than to Neugebauer, for see the latter’s ear-
lier remark that “[t]he mathematical logic of these methods is such that 
the purely historical problem of contact or transmission, as opposed to 
independent discovery, becomes a rather minor one.” Neugebauer, “On 
the Planetary Theory,” 90. Nonetheless, in a personal communication, 
Swerdlow assured me that Neugebauer completely endorsed the phrasing 
in their Mathematical Astronomy in Copernicus’s De Revolutionibus. Edward S. 
Kennedy and Willy Hartner also entertain little doubt that Copernicus’s 
work was heavily influenced by his Islamic predecessors. Kennedy, “Late 
Medieval Planetary Theory”; Hartner, “Copernicus, the Man, the Work.” 
A recent rejoinder to André Goddu’s skepticism regarding an Islamic in-
fluence on Copernicus has been made by Barker and Vesel, “Goddu’s 
Copernicus,” 327–32. Goddu’s answer, in which he distances himself 
from an outright rejection of Islamic influence, can be found in his 
“Response to Peter Barker,” 251–4.

62 Veselovsky, “Copernicus and Naṣīr al-Dīn al-Ṭūsī.”
63 Copernicus, De revolutionibus, book 5, ch. 25.
64 F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 2, 430.
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65 Copernicus, On the Revolutions, 369, 429 (commentary by Rosen); Swerdlow, 
“Copernicus’s Four Models,” 146n5, 155n8; Prowe, Nicolaus Coppernicus, 
vol. 1, part 2, 407, cited by Rosen in Copernicus, On the Revolutions, 369.

66 Di Bono, “Copernicus, Amico, Fracastoro,” 146.
67 Copernicus, On the Revolutions, 279.
68 Ibid., 126 (in book 3, ch. 4, where it was crossed out in the autograph, and 

in book 3, ch. 5, where it was left in).
69 This idea is also the main thrust of Blåsjö, “Critique of the Arguments.”
70 Di Bono, “Copernicus, Amico, Fracastoro,” 149.
71 Ibid., 133.
72 Ibid., 149 (referring to Neugebauer’s statement quoted in note 61 above).
73 Note again that Goddu dismisses out of hand Kren’s mostly correct 

reconstruction.
74 Grażyna Rosińska claims that Brudzewo owes his two-sphere model for the 

Moon to Sandivogius, but this is far from clear. Rosińska, “Naṣīr al-Dīn al-
Ṭūsī?” Sandivogius seems to be proposing one additional orb (not two) for 
the Moon and for an entirely different purpose, namely to keep its single 
face oriented toward the observer.

75 Mancha, “Ibn al-Haytham’s Homocentric Epicycles.”
76 This conclusion, as part of a longer study on Brudzewo, is also reached by 

Barker, “Albert of Brudzewo’s Little Commentary,” 137–9. Peter Barker seems 
unaware of José Luis Mancha’s earlier work.

77 Goddu, Copernicus, 157: “Experts have exaggerated the supposed identity 
between Copernicus’s and al-Shatir’s models and the Tusi couple. Di Bono 
explains the similarities plausibly as matters of notation and convention. Di 
Bono also shows that Copernicus’s use of the models required an adapta-
tion, and, we may add, if he was capable of adapting geometrical solutions, 
then why not the solution in Albert’s [i.e., Brudzewo’s] treatise? The ques-
tion should be reconsidered.” One hardly knows where to begin. First, Di 
Bono does not deal with Ibn al-Shāṭir’s models. Second, the adaptation 
about which Di Bono is speaking (i.e., the two-equal-sphere model) already 
occurred with Ṭūsī, as we have seen. Third, for Goddu to think that Coper-
nicus could have simply adapted Brudzewo’s cryptic and ultimately unrelat-
ed remarks to come up with Ibn al-Shāṭir’s models in the Commentariolus, 
one must assume that Goddu has never examined those models.

78 It should be noted that some of this evidence would have been available to 
Di Bono and even more to Goddu, whose book was published in 2010. It 
is unfortunate that the presumed lack of transmission that Di Bono and 
Goddu point to does seem to be at work in the present when we consider 
how slowly the work of scholars working on Islamic science seems to get 
transmitted to their colleagues working on the Latin West. For example, 
Goddu, who is mainly concerned with Copernicus’s relation to the 
Aristotelian tradition, completely ignores the possible transmission from 
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Islamic sources of a number of Copernican ideas related to natural philoso-
phy, such as the motion of the Earth, the assertion of a non-Aristotelian 
astronomical physics, and the heliocentric transformation itself. 
Summarized in F.J. Ragep, “Copernicus.”

79 F.J. Ragep, “New Light on Shams,” 243–5.
80 Pingree, Astronomical Works, 18. But there are certainly examples of Arabic 

works going into Greek. See Mavroudi, Byzantine Book; Touwaide, “Arabic 
Urology in Byzantium”; and Touwaide, “Arabic Medicine.” Joseph Leichter 
believes that Chioniades may have learned or improved his Arabic at some 
point. Leichter, “Zīj as-Sanjarī,” 11–12.

81 Mercier, “Greek ‘Persian Syntaxis,’” 35–6, reproduced in Leichter, “Zīj as-
Sanjarī,” 3.

82 Information on the manuscripts is from Pingree, Astronomical Works, 23–8.
83 Swerdlow and Neugebauer, Mathematical Astronomy, part 1, 48n9.
84 Pingree, Astronomical Works, 25.
85 An excellent summary of what is known of Copernicus’s life can be found 

in Swerdlow and Neugebauer, Mathematical Astronomy, part 1, 3–32.
86 Comes, “Possible Scientific Exchange.” Note also that Tzvi Langermann al-

ludes to the possibility of a link between Alfonso’s court and Muḥyī al-Dīn 
al-Maghribī, who was of Andalusian origin but spent most of his career in 
Syria and Iran. Langermann, “Medieval Hebrew Texts,” 35.

87 Lévy, “Gersonide, commentateur d’Euclide,” 90–1, 100–15.
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269



108   Islamic Astronomy and Copernicus
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of the spoils of the Thirty Years’ War that was offered by Maximilian I of 
Bavaria to Pope Gregory XV. Ibid., 159–62. But it was certainly in central 
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shāhiyya fī al-hayʾa (MS Orientali 116c; and MS Orientali 215). In addition 
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double-columned pages, devotes precisely one short, off-handed endnote 
to the “Maragha school” (531n136). Ṭūsī and the Ṭūsī-couple are com-
pletely absent; Jews and Byzantines fare little better.

107 Di Bono, “Copernicus, Amico, Fracastoro,” 149: “In conclusion, we note 
that this same question of transmission may be reduced in significance, in 
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– it is the internal logic of the methods used that leads the Arabs and 
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Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 1, 48–51.
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West; but perhaps with the limited exception of Henry of Hesse, one 
does not find the sustained criticism of Ptolemy’s irregularities that is 
comparable to Ibn al-Haytham’s Al-Shukūk ʿalā Baṭlamyūs (Doubts about 
Ptolemy). This criticism is of course different from criticisms of Ptolemy 
based upon an Aristotelian-Averroist insistence on a homocentric cos-
mology. The lack of sustained criticism is surprisingly still the case even 
in the generation before Copernicus; as Dobrzycki and Kremer put it, 
“We know of no extant text by Peurbach or Regiomontanus in which the 
Ptolemaic models are criticized explicitly on the grounds that they vio-
late uniform, circular motion.” Dobrzycki and Kremer, “Peurbach and 
Marāgha,” 211n27.

112 Celenza, chapter 1, this volume, emphasizes the very different kind of ref-
erencing practice that was followed in the premodern world, where the 
need to document the source of one’s ideas or scientific models was less 
strongly felt. However, it would be quite unusual for someone who in-
vented as significant a device as the Ṭūsī-couple not to claim it as his own. 
Bisaha, chapter 2, this volume, provides another reason that early modern 
European thinkers may have hesitated to credit postclassical Islamic schol-
ars with innovative ideas.

113 In my forthcoming “Ibn al-Shāṭir and Copernicus: The Uppsala Notes 
Revisited,” I speculate that Copernicus’s incorrect adaptation of Ibn al-
Shāṭir’s models in the Commentariolus may indicate some influence of an 
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114 F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir, vol. 1, 208–13.
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The Two Versions of the Tüsi Couple 

F. JAMIL RAGEP

INTRODUCTION 

THE ATIEMPT by Naşir al-Din al-Tii.si (1201-1274)a to reform the Ptolemaic
system has been known in the West (at least in the Modern Period) since 

the appearance in 1893 of Carra de Vaux' translation of Book il, Chapter Eleven 
of Al-Tadhkira fi 'ilm al-hay'a (Memoir on the science of astronomy). That 
Tu.srs proposal was not an isolated event but rather one in a series of alter­
native cosmologies, ones bearing a striking resemblance to that of Copemicus, 
was first clearly enunciated in an article published by E. S. Kennedy in lsis
in 1966. 1 Willy Hartner in several articles also pointed to the significance of 
Tii.sI's models and their possible connection with Copernicus. 

Hartner correctly recognized that the translation and analysis presented 
by Carra de Vaux suffered from serious defects and sought to remedy these 
in his study of Tii.sı's lunar model that appeared in Physis in 1969. But in 
spite of Hartner's customary precision in construing the mathematics of the 
models, the details of the physical cosmography eluded him. This led him 
to make the unfortunate remark that ''Naşir (sic) must have considered his 
model primarily a geometrical construction without caring much about its 
physical reality, "2 a statement very wide of the mark. in fact, the aim of virtu­
ally every theoretical astronomer in the Arab/Islamic tradition was to pro­
vide a physical structure, or hay'a,3 for the universe in which each of Ptolemy's 
motions in the Almagest would be the result of a uniformly rotating solid 
body called an orb (falak). This process, of course, had been initiated by 
Ptolemy himself in Book II of his Planetary hypotheses. But it had become 
clear, at least by the time of lbn al-Haytham (ca. 956-ca. 1040), that a co­
herent, physically unobjectionable system could not be obtained simply by 
assigning a physical mover to each motion inasmuch as Ptolemy had felt com­
pelled, owing in general to the phenomena itself, to resort to motions that 
violated the principles of uniformity and circularity. 4 By the late medieval 
period, these violations, sixteen in number and commonly referred to as ish­
kiiliit (difficulties), could be found enumerated as follows: (1-6) the irregular 
motions of the deferents of the moon and planets; (7-11) the irregular mo-

a All dates are A.D. 
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tions, each equivalent to the corresponding motion of the deferent, of the 
apices of the epicycle diameters of the superior and inferior planets along small 
circles that produce one component of Ptolemy's latitude theory and (12-13) 
the analogous motions of the endpoints of the mean epicyclic diameters in 
the case of the two inferior planets; (14-15) the oscillation of the equators 
of the deferent orbs of the inferior planets; and (16) the oscillation of the lunar 
epicycle as a result of the alignment of its diameter with the prosneusis point. 5 

It has become commonplace to refer to these objections to the Ptolemaic 
system as somehow "philosophical, "6 a term which is meant to imply, 1 am 
afraid, something that is scientifically, or more to the point mathematically, 
insubstantial. in at least one case, however, that of the motion of the epicyclic 
apices on small circles, the objection does involve the disruption of Ptolemy's 
longitude models by his latitude theory, certainly by any criterion a serious 
flaw in the ability of these models, when taken as a complete system, to give 
accurate planetary positions. But leaving this aside for the moment, I would 
maintain that regarding these objections as "philosophical" or "metaphysical" 
seriously distorts the actual intentions of the medieval astronomers who made 
them. Their purpose was to build a coherent cosmology in which the results 
of Ptolemy's mathematical models could be obtained from a physically ac­
ceptable cosmology. They themselves would thus see these objections as phys­
ical in the sense that they referred to violations of the physical principles that 
formed the hasis for such a cosmology and that were accepted by virtually 
ali astronomers - including Ptolemy. in a work such as Al-Tadhkira, one finds 
these principles explicitly stated to be the absence of a void, the finitude of 
the heavens, and the doctrine that the celestial bodies or orbs move with a 
simple motion, namely uniform rotation. 7 That the celestial bodies do not 
experience change in the manner of bodies in the sublunar region thereby be­
comes not a metaphysical tenet but rather a consequence of the physical laws, 
for generation, corruption, expansion, contraction, changes in speed and so 
forth are a result of rectilinear natural motion. Since celestial orbs are simple 
bodies rotating uniformly, these changes of the sublunar region are precluded 
in the heavens. 8 

Of course, one may maintain that the physical principles themselves are 
based upon metaphysical (or nonphysical) foundations, but this line of 
reasoning misses the point in a very real sense. Besides the fact that such an 
argument can be used against any physical system, one should recognize that 
the medieval lslamic astronomers were themselves moving away, though not 
always explicitly, from a physics that would necessarily be subsumed under 
a totalitarian philosophical umbrella. Though the uniform circular motion 
of the heavens might ultimately have to do with souls and a grand design, 
it was also something that could be taken as observational fact. 9 it is for this 
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circles of the epicycle diameters (ishkalat nos. 7-13), he had no solution of 
his own to offer. 12 By the time Al-Tadhkira was completed, however, he had 
at least partially resolved the remaining ishkalat by means of a second 
lemma, one that was again intended to produce a linear oscillation but this 
time on the surface of a sphere. 

We may, by somewhat extending Kennedy's terminology, refer to the two 
lemmas as the rectilinear and curvilinear versions of the Tü.si: couple. it is to 
these and the models based upon them that we now turn our attention. 

THE RECTILINEAR VERSION OF THE TÜSI COUPLE 

As Tüsi: states explicitly in the l;lall, the purpose of the rectilinear version 
of the Tüsi: couple is to have on hand a method of varying the distance of 
the epicycle center from a given point by simply having it oscillate on a straight 
line . 13 The device itself consists of two circles, one having a diameter half that 
of the other, with the smaller being internally tangent to the larger (see FıGURE 
1). in addition to these geometrical givens, there are several physical condi­
tions. The two circles move in opposite directions, each with a simple, uni­
form rotation, and the smaller circle has a rotation twice that of the larger. 
The result of such a configuration is that a given point will oscillate on a straight 
line between extrema A and B.14 

Actually, Tüsi: does not need two motions to achieve the oscillation of his 
given point along the diameter of the larger circle; he merely needs to allow 
the smaller circle to "roll" inside the larger one, which would remain stationary. 
To see this we will again refer to FıGURE 1; now, however, instead of both 
circles rotating in place, circle Z will roll inside circle D. At the starting point, 
A and E coincide; after the smaller circle has rolled along arc AG, point E 
will be at a distance GE from the point of tangency G. it is clear that GE =
AG; therefore, LGZE = 2LGDA since the radius of the smaller circle is half 
that of the larger. Thus mathematically, this rolling is equivalent to having 
the smaller circle rotate twice as fast as the larger one in the opposite direc­
tion. We may alsa, being anachronistic, find the locus of the point E by noting 
that the parametric equations of DZ + ZE are 

x = s cos a + s cos ( - a ) = 2 s cos a 
y = s sin a + s sin (-a) = O, 

which indicate that point E will oscillate on a straight line. (Note that it is 
unnecessary to make any assumptions about the whereabouts of point E or 
that LGDE. == LGDA.) 

This sort of analysis seems to be the hasis for calling the Tüsi: couple a 
"rolling device. "15 Unfortunately, such an appelation seriously misrepresents 
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A 

B 

FIGURE 1 

Tüsi's intentions, not to mention the entire thrust of medieval Islamic theo­
retical astronomy. The TüsI couple is not simply a mathematical formula­
tion; it is meant to possess a physical reality. Therefore each of the two circles 
must rotate in place since the rolling of one celestial body inside another is 
precluded by the absence of any void in the heavens and the stricture against 
any "tearing or mending. "16 

That Tüsi means the couple to have a physical reality becomes strikingly 
clear in the presentation of his lunar and planetary models. 17 Instead of circles, 
we now have two spheres, the Iarger of which rotates with half the speed of 
the smaller; the given point E has been replaced by a spherical epicycle (see 
FıcuıtE 2). The couple itself is composed of the two circles, shown with dotted 
lines, that would be the resultant paths of the epicycle center if the large and 
small spheres were to rotate independently of one another.18 These two paths 
are referred to by Tüsi as equators (mintaqas) though it is obvious that they 
do not fit the standard definition. 19 Nevertheless as they are concentric and 
coplanar with their corresponding equators, we shall refer to them as "inner 
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E Q equant point 
C center of Ptolemalc deferent 
O center of World 
E eplcycle center 

FıGURE 4. Tüsfs planetary model. 

center will be at perigee after half a rotation of the deferent (see FıGURE 3). 
But since this should occur at quadrature according to Ptolemaic theory, 
Tüsı must now rotate the deferent in the opposite direction. This is accom• 
plished by enclosing the deferent with the inclined orb (al•falak al•ma'il), 
which shares with the former the same poles and center. The inclined orb 
is thus the source of the ''motion of apogee" of the Almagest. Finally the in• 
clined orb is enclosed by the parecliptic orb, which has the same center but 
poles that are at a distance of 5 ° from those of the deferent and inclined orbs. 
Its equator, which is in the plane of the ecliptic, intersects the equator of the 
inclined orb at two points called the nodes ('uqdatan or jawzahar). The 
rather slow retrograde motion of the parecliptic accounts for the motion of 
the nodes (approximately 19·year eyde). 
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FIGURE 5. 

For the planets, exduding Mercury, one has a somewhat different arrange­ment. 24 The deferent in this case is an eccentric orb, embedded within the parecliptic, whose center Q is that of the equant in the Ptolemaic model, i.e.it is at a distance 2e from the center of the World O and at a distance e from the center C of the Ptolemaic deferent, where e is the eccentricity (see FıcuRE 4; only the "inner equators" are shown in order to simplify the illustration). Embedded within the deferent is the large sphere of the Tüsi couple, whose inner equator has a diameter of 2e while the inner equator of the small sphere has a diameter e. Now in order for the distance OE from the center of the World to the epicyde center to be R + e at apogee and R - e at perigee so as to conform with the requirements of the Ptolemaic model where R is the radius of the deferent (see FıcuRE 5), the epicycle center E at apogee must be at its closest position to Q while at perigee it must be at its farthest distance. It then easily follows that the inner equator of the deferent in this model has a radius of R + e and that the starting position of E must be, in contrast to that of the lunar epicycle center, at the extremum on the line of oscillation that is nearest Q. Thus Tüsi will need, as he states, three additional spheres for his model over what is used in the Ptolemaic planetary configuration: the 
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large and small spheres of his couple and an "enclosing sphere" for the epicycle. This latter, as for the lunar epicycle, is needed to keep the epicyclic apex and perigee aligned with the point about which uniform motion occurs, in this case the equant center Q. The following table summarizes the parameters of the various orbs and equators and their motions. As for that most insidious planet Mercury, Naşir al-Din admits unquali­fied defeat: "for it is difficult to see how one can make the motion uniform about a point in which the moved object in its motion toward and away from it is composed of multiple motions, "25 a plaint directed at Mercury's so-called "crank mechanism." He does, though, promise to append a solution to Al­
Tadhkira if he were ever to find one; as there is no trace of such a work or reference to it in the commentaries, Mercury would seem to have eluded him to the end.26 

THE DIFFERENCE BETWEEN THE TUSI 
AND THE PTOLEMAIC MODELS 

Though Tüsı has striven to develop models that will be mathematically identical to those of Ptolemy, he must admit that there are discrepancies. in the Ptolemaic theory, the path of the epicyde center that results solely from the motion of the eccentric deferent (i.e. taken in isolation from the motions of the apogee and nodes) is a circle. But as Tüsı tells us, the analogous path in his lunar model that is due to the rectilinear oscillation of the epicycle center in combination with the concentric deferent "resembles a circle, but we did not say that it was a circle since it is not a true cirde."27 The proof he offers is quite straightforward (see FıGURE 6). After the concentric deferent has ro­tated 90 °, the epicycle center will have traveled a distance equal to the eccen­tricity e on its line of oscillation. It will then be at a distance R - e from the center of the World. But its distance from the midpoint between its nearest and farthest distances, which corresponds to the eccentric center of the Ptolemaic model, will clearly be greater than R - e, and thus greater than the distance from the center of its path at its farthest and nearest distances. This is the well-known "bulging out" phenomenon of both late medieval Is­lamic and Copernican planetary theory. (Though we have dealt specifically with the lunar case, the same analysis is equally applicable to the planetary rnodels.) Tüsı is not content merely to indicate that there is a difference; he also wishes to quantify it, For the moon, he notes that the deviation does "not exceed 1/6 of a degree" and that this maximum difference will occur at the octants, i.e. when the doubled elongation equals 90° or 270°. 28 As Hartner 
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Farthest Dlstance 

R·e 

Mld�oint between 
the "Two Dlıtınces 

R·e R·e e 

Eplcycle Center Center of World l;P.icycle enter 
af Mean Dlstance at Meın Dlıtance 

fIGURE 6. 

has shown, Tüsı is absolutely correct; the maximum difference turns out to 
be approximately 8 minutes of arc, and does indeed occur at the octants. 29 

in the course of his discussion, Tüsı makes the very interesting remark 
that this maximum difference of 1/ 6 of a degree at the octants is "an imper­
ceptible amount" (ghayr ma�süs), which gives some idea of what the director 
of an observatory in the 13th century believed to be the limits of observation. 
Since Tüsı also declares, this time with regard to his planetary models, that 
"the distances of the epicycle center from the center of the World are the same 
as resulted from the [Ptolemaic] deferent without there being a difference that 
might disturb the situation of these planets, "30 it would seem appropriate to 
test this daim as well. 

From FıGURE 4, it is clear that the Earth-epicycle center distance in Tüsı's 
planetary models will be given by 

(OE)2T = (QE)2 + (2e)2 - 2(QE) (2e) cos (180 - a). 

Now since one may show without too much difficulty that QE (the distance 
from the equant to the epicycle center) is equivalent to R - e cos a, we obtain 
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FtGURE 8. 

C center of deferent 
O center of World 
P polnt of algnment 

(prosneusis polnt) 
E : center of eplcycle 

whose maximum absolute value is reached when L CPE = 0°, 180°, thus con­
firming that the maximum speed of point T will indeed take place at the apogee 
and perigee. 

For Tüsi, this motion is a clear violation of the physical premises under 
which an astronomer should work. For the epicycle, which is a solid body, 
would oscillate on the diameter connecting the poles of the epicycle (i.e. the 
diameter perpendicular to the plane of the paper) and would thus not com­
plete the required uniform rotation.34 The emphasis on solid movers is im­
portant here. Tüsi would not accept, for example, a solution in which the 
oscillation of point T were somehow replaced by a motion on a small circle 
since this sort of circular motion would not have been brought about by uni­
formly rotating orbs. Tüsi makes this point explicitly when he draws our at­
tention to the close similarity of the prosneusis point ishkal and the difficulty 
arising from Ptolemy's latitude theory as presented in the Almagest.35 in the 
case of all five planets, the endpoints of the diameters of the epicycles that 
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FıGURE 9. 

are aligned with the equant36 will perform a revolution upon a small circle 
perpendicular to the plane of the deferent. This will produce that component 
of latitude called the deviation (mayi) (see FıGURE 9).37 Mercury and Venus 
are distinguished by a further latitudinal variation, called the slant (in�iriif), 
whereby the endpoints of a second diameter at right angles to the first and 
in the same plane will perform a similar revolution upon small circles, again 
perpendicular to the deferent. 

Tüsı raises three objections to Ptolemy's construction.38 First, "it does not 
take into account the configuration (hay'a) of those bodies that are the prin­
ciples for these motions." Since a point in a medieval cosmological system 
cannot simply move by itself, one must provide the appropriate uniformly 
rotating orbs to produce motion. Second, "it compounds the difficulty that 
we are expending all this effort to resolve by making the motion uniform about 
a point other than the center of its revolution." This is because the endpoint 
moves along the small circle with the same nonuniform motion as that of the 
epicycle center on the deferent. Finally, "just as the aforementioned small circles 
bring about latitudinal inclinations, they also cause inclinations to occur in 
longitude ... " Unlike the first two objections, this one is not a problem of 
physics (or, as some would have it, "philosophy") but in the predictive ability 
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the oscillating apex and perigee between the small sphere and the epicycle. 
As should be clear from FıGURE 11, it must move in the same direction and 
with the same speed as the large sphere in order to bring the rest of the epicycle 
to its proper position. (This orb is analogous to the enclosing orb (mul;ııfa) 
of the rectilinear version.) The net result far the epicycle as a whole would 
then be an oscillation on an axis coincident with the mean diameter, i.e. the 
diameter of the epicycle in the plane of the deferent perpendicular to AB. 41 

Such a series of three enclosing orbs is not only useful in resolving the 
problem of the motion of the planetary epicycles in latitude, it can alsa be 
used whenever an oscillation between extrema on a great circle arc is needed. 
Thus as Tüsı notes, the second version of his couple may account far the os­
cillation of the equator of the inclined orb of the two inferior planets in lati­
tude as well as the longitudinal inclination of the diameter of the lunar epicycle 
due to its alignment with the prosneusis point. Finally Tüsı remarks that his 
device could even produce a trepidation of the equinoxes as well as a cyclical 
change in the obliquity of the ecliptic. 42 

But there are problems with the curvilinear version, some of which Tüsı 
acknowledges, some of which he does not. One that seems to have escaped 
him is the failure of the couple to work as advertised. The resultant locus 
will not, in fact, be an arc but rather a stretched aut figure 8 on the surface 
of a sphere (see FıGURE 11). 43 To see this we need only note that in spherical 
triangle EA2H the exterior angle FEA2 must be less than the sum of interior 
angles EHA2 and EA2H;44 the endpoint of radius vector EAz must therefare 
always extend beyond arc A1G except when 0 = n90 °, n any integer, in which 
case A2 will fall on it. Nevertheless, because of the small size of the arcs of 
oscillation, divergence will be slight.45 

Another remaining difficulty, one that Tüsı must regretfully admit he is 
incapable of resolving, is related to objection two. 46 Because the motion of 
epicyclic apex A is approximately given by AıH - AıH cos 0, 47 it is clear 
that its inclination in either direction from H will be exactly equivalent in 
amount and duration; the Ptolemaic theory, however, requires that this incli­
nation be of longer duration in one half than the other since the motion of 
point A on the small circle is coordinated with the irregular motion of the 
epicycle center on the deferent. Similarly, far the case of the inclination of 
the lunar epicycle due to the prosneusis point, Tüsı notes that his construc­
tion will result in a motion of inclination that is symmetrical with respect 
to the line joining the centers of the epicycle and the deferent whereas the 
Ptolemaic model results in an asymmetrical motion of inclination48 (see above 
and FıGURE 8). Undoubtedly these lingering unresolved problems, as well as 
the lack of any model far Mercury, were important motivations far subse­
quent generations of astronomers. 
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THE DYNAMICAL PROBLEM 

One aspect of the Tüsi models that is especially perplexing is the manner 
in which certain orbs may move others. 49 in particular, it is not immediately 
obvious how the mu�fta, or enclosing sphere, is capable of moving the 
epicycle. Because they are coaxial and concentric, and because of the lack 
of friction or violent motion in the heavens, it is difficult to see how Tüsi 
intends the mu�fta to cause a motion in the epicycle. 

in order to deal with this specific issue, it will be useful to digress a bit 
and briefly discuss the general problem of medieval celestial dynamics. Each 
uniformly rotating orb, of course, is the source of a single motion, but in ad­
dition it may also be capable of simultaneously moving another orb. To un­
derstand how this is possible, it is important to be clear as to what precisely 
is meant by the term orb (falak). Tüsi defines it as "a spherical solid bounded 
by two concentric parallel surfaces," one convex, the other concave. 50 Some 
orbs, though, such as epicycles, have an inner surface that degenerates to a 
point; it is on this account that an orb may sometimes be a sphere.51 in the 
case of eccentrics and epicycles, there is really no dynamical problem since 
these bodies are moved simply as a consequence of being contained within 
the thickness of another moving orb with a different center. (See FıGURE U 
in which these two possibilities are illustrated.) 

On the other hand, there was a problem in understanding how one orb 
could move another orb concentric to it. Part of the reason for the difficulty 
arose because of a somewhat different conception of the orbs in the cos­
mographical tradition exemplified by Al-Tadhkira than that found, say, in 
Ptolemy's Planetary hypotheses and in the less specialized Arabic literature 
such as Ibn Rushd's Talkhış ma ba' d al-tabi' a (Epitome of the metaphysics) 
or the Rasa'il (Epistles) of the Ikhwan al-Şafa.52 There the heavens are stated 
to be a single living being. Hence the daily motion is simply the motion of 
the whole, and the other orbs are considered parts of this whole. But in the 
hay'a literature, the daily motion is caused by the ninth orb which is a discrete 
orb as defined above. Thus, for example, Tüsi does not take it for granted 
that the eighth orb, which contains the fixed stars, or any other orb for that 
matter, will partake in some automatic way of the first motion, i.e. the daily 
rotation of the heavens. The ninth orb, which shares the same center but not 
the poles of the eighth, is given the awesome task of transmitting to the eighth 
orb, as well as to all else in the heavens, its own daily rotation. 53 Tüsi is not 
very explicit in telling us how this transmission will occur. The classical solu­
tion, and the one most widely assumed in modern discussions of medieval 
cosmology, would somehow attach the poles of the eighth orb into the ninth. 
This is rejected by the commentators on Al-Tadhkira. Al-Sharif • Alı al-Jur­
jani (d. 1413), for example, does so on the grounds that 
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motions. As we have seen, this analytical approach is explicit; it is further revealed by Tüsı's desire to quantify the maximum difference between the predictions of his lunar model and that of Ptolemy, and by a remarkable in­terest in the maximum speed achieved by the mean epicyclic apex as a result of Ptolemy's lunar prosneusis. These examples indicate an emerging concern for a variety of problems that are of great historical importance; obviously a further examination of the mathematics of the non-Ptolemaic models of Tüsı and his successors would be highly desirable. But it is the physical aspect of "füsı's work that l would maintain to be the most significant historically. By showing that one could indeed reform the Ptolemaic system according to the accepted physics, Naşır al-Din has given both legitimacy and immediacy to a program that had been until his time talked about but not acted upon. He no doubt saw himself as saving the Ptolemaic system by giving it consistency; ironically, the insistence upon an astronomy that was both mathematically and physically sound would even­tually lead to the demise of classical cosmology. 
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NOTES 

1. Dreyer, 269, n. 1, seems to have been the first to recognize that Copernicus employs Tusı's 
construction for producing rectilinear motion. 
2. Hartner 1969, 302. 
3. Whence the name of the enterprise 'ilm al-hay'a, i.e. the "science of hay'a." Eventually this 
came to denote astronomy in a general sense though the more specialized meaning was stili un­
derstood. See, for example, Tashkubrızade, 1: 372. 
4. The mest important of the early criticisms of Ptolemy occurs in Ibn al-Haytham's AI-Shu­kük 'alii Baflamyus, partially translated in Sabra 1978. George Saliha deals with two other con­
temporary criticisms in his lbn Sina and Abu ·Ubayd al-Juzjanı: The problem of the Ptolemaic 
equant. Al-Biruni (973-ca. 1050) is also aware of the problems inherent in physicalizing 
Ptolemy's geometrical models; see, for example, his AI-Qanün al-Mas' udı, 2: 838. 
5. Cf. Shams al-Din MuJ:ıammad al-Khafri (fi. early 16th c.), Bk. II, Ch. 11, ff. 189b-190a. 
6. See, among others, Kennedy, 366-7; Hartner 1975, 9.
7. Tadhkira, Bk. I, Ch. 2. An edition and translation of Bk. I and Bk. II (Chapters 1-11) of Al­Tadhkira is included in my Cosmography in the Tadhkira of Naşır al-Din al-'füsı.
8. This is explicitly stated by Ni;ı:am al-Din al-Nisaburı (fi. early 14th c.), f. 10a. 
9. Cf. Aristotle De Caelo, Bk. I, Ch. 3, 270b5-16, and Metaphysica, Bk. XII, Ch. 7, 1072a20-23. 
10. Tadhkira, Bk. I, Ch. 2, par. 3. 
11. üne finds the non-Ptolemaic models of the lfall in Ch. 3. The lfall and the R.-i Mu·ıniyya
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have been published in individual facsimile editions by Mu}:ıammad Taqi Diinish-Pizhüh. E. S. 
Kennedy's 1984 article in Centaurus describes both treatises. Wheeler Thackston is currently 
preparing an edition of the two works and a translation of the l;lall (the latter in collaboration 
with myself). 
12. l;lall, Ch. 5.
13. l;lall, 7.
14. l;lall, 7-9; Tadhkira, Bk. II, Ch. 11, pars. 3-4.
15. Cf. Kennedy, 368-70; Hartner 1969, 289; and Neugebauer, vol. 1, 10, vol. 2, 1035.
16. Tadhkira, Bk. I, Ch. 2; this confusion about rolling has unfortunately led Moesgaard, 129
to attempt to distinguish between an alleged "mathematical" approach by Copernicus and a "phys­
ical" one by Tüsi. 
17. Hal/, 9-13; Tadhkira, Bk. II, Ch. 11, pars. 5-9, 11. A familiarity with the corresponding
Ptol�maic models is hereafter assumed; excellent presentations of them can be found in Neuge­
bauer and Pedersen.
18. al-NisiibürI, f. 65b.
19. Cf. Tadhkira, Bk. I, Ch. 1, par. 14: "The great circle equidistant from the two poles is the
sphere's equator."
20. Both Carra de Vaux and Hartner failed to distinguish between the sphere's equator and itsminfaqa and consequently were led to misconstruct the models. One unfortunate result of this
has been the assumption by some that medieval astronomers were as haphazard and uninterested
in cosmology as their modern commentators, a wholly unwarranted conclusion.
21. The size of the mu�ıfa is not specified; TüsI only says that it may be "of any appropriate
thickness" but "it should not be large Jest it occupy too big a space" (Tadhkira, Bk. II, Ch. 11,
par. 6). Hartner believes that the mu�ıta should be of zero thickness since any additional space
would cause a disruption of Ptolemy's planetary sizes and distances (Hartner 1969, 292-93). But
this would only be a consideration if the actual distances could be verified, which, of course,
was not possible except for the sun and moon. As is well known, the accepted classical distance
to the sun found by Aristarchus is considerably off, but this allowed, purely accidentally, for
the complete systems of orbs of Venus and Mercury to be placed between the moon and sun.
There was stili some space left over between Venus and the sun, however; if anything, the addi­
tional mu�ıfas could have helped fili this gap.
22. l;lall, 10; Tadhkira, Bk. II, Ch. 11, par. 6.
23. This is not a necessary condition; in the l;lall, 11, TüsI states that the large sphere may
move in either direction.
24. Hali, 12; Tadhkira, Bk. II, Ch. 11, par. 11.
25. Tadhkira, Bk. II, Ch. 11, par. 12.
26. Hartner's daim that TüsI had "invented a theory based on the same principle but too com­
plicated to be explained here, which he hopes to bring as an appendix" (Hartner 1969, 299) is
a misreading.
27. Tadhkira, Bk. il, Ch. 11, par. 10.
28. Ibid.
29. Hartner 1969, 299.
30. Tadhkira, Bk. II, Ch. 11, par. 11.
31. Pedersen, 280.
32. The actual values near the first quadrature, which are dependent on the eccentricity, are:
Venus, 90° ; Mars, 89°53'; Jupiter, 89°59'; and Saturn, 89°59'. Rounding off to 90° will have an 
insignificant effect on the accuracy of ô to the nearest minute.
33. Tadhkira, Bk. II, Ch. 11, pars. 13-14.
34. Ibn al-Haytham presents the problem in a similar fashion in his Shukük, 15-20.
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The origins of the Ṭūsī-couple revisited

F. Jamil Ragep

Among the many contributions by James Evans to the history of astronomy is his clear and el-
egant paper on the origin of Ptolemy’s equant.1 As has been his hallmark, he there brought his 
considerable talent as a modern scientist together with his sophisticated historical sensitivity. 
The result was an important contribution to the vexed problem of the origins of this problematic 
device.2 

The equant itself, despite its success in resolving observational issues related to the retro-
grade arcs of the planets, evoked considerable controversy among Islamic astronomers because 
of the violations resulting from it of the strictures of uniformity and circularity in the heavens. 
Among the devices proposed for dealing with these violations was the Ṭūsī-couple, put forth 
by the famous thirteenth-century astronomer and polymath Naṣīr al-Dīn al-Ṭūsī (1201-1274). 
Although it has been known for some time that Ṭūsī used the device in his lunar and planetary 
models found in his al-Tadhkira fī ʿilm al-hayʾa (Memoir on the science of astronomy), there has 
been a divergence of opinion about when Ṭūsī first proposed his new device and models. In this 
paper, I present new evidence that sheds light on the first appearance of the Ṭūsī-couple.

In an earlier paper,3 I argued that Naṣīr al-Dīn al-Ṭūsī first announced his famous astronom-
ical device, which we now refer to as the Ṭūsī-couple, in a Persian astronomical work entitled 
the Risālah-i Muʿīniyya (The Muʿīniyya treatise, named for one of Ṭūsī’s patrons), which was com-
pleted in 632/1235.4 He first presented it in the appendix to this work, which is called, among 
other things, the Ḥall-i mushkilāt-i Muʿīniyya and Dhayl-i Muʿīniyya (the resolution of difficulties in 
the Muʿīniyya; appendix to the Muʿīniyya). I maintained that there were compelling reasons for 
believing that the Ḥall predated a second version of the couple briefly presented in Ṭūsī’s Taḥrīr 
al-Majisṭī (Recension of the Almagest), which was completed in 644/1247; however, there was still 
some question since no manuscript had yet been found that gave a date for the Ḥall. But thanks 
to an examination of a manuscript in Tashkent, which was brought to my attention by Sergei 
Tourkin, we now have a date for the Ḥall and therefore for the first publication of the Ṭūsī-cou-
ple. This new dating confirms my original chronology, but it also raises some new questions and 
puzzles, which I discuss in what follows.

Before presenting this new evidence, let me briefly summarize the information we have on 
the Ṭūsī-couple. The final and most complete presentation of Ṭūsī’s models occurs in al-Tadhkira 
fī ʿilm al-hay’a, written in Arabic, which first appeared in 659/1261 when Ṭūsī was the director of 
the Marāgha observatory that had been established under Mongol patronage in Azerbaijan. Ṭūsī 
presents them in the context of criticisms of the models that had been developed by Claudius 
Ptolemy in the 2nd century CE in Alexandria, Egypt, and brought forth in the latter’s Almagest 

1  Evans 1984. 

2  For a review of several theories on the origin of the equant, see Duke 2005.

3  Ragep 2000.

4  When separated by a slash, the first date is lunar hijrī; the second is common era. Otherwise the date is com-
mon era.
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Ṭūsī promises to put his solution in a separate work if the “Prince of Iran...would be so 
pleased to pursue this problem,” a reference to Muʿīn al-Dīn Abū al-Shams, the son of his patron 
Nāṣir al-Dīn Muḥtasham. And indeed, a solution is presented in the Ḥall-i mushkilāt-i Muʿīniyya. 
The Ḥall consists of 9 chapters:

Chapter 1: On the possibility of a fixed star 
whose colatitude is greater than the differ-
ence between the local latitude and the to-
tal obliquity, after having been either per-
manently visible or permanently invisible, 
becoming invisible or visible

آنكه چون تمام عرض كوكبى از ثوابت  فصل 1: در �

زيادت از فضل عرض بلد بر ميل كلىّ بود ممكن باشد 

آنكه ابدى الظهور يا ابدى الخفا بوده باشد  كه بعد از �

اورا خفائى يا ظهورى حادث شود 

Chapter 2: On why the eccentric orb was 
chosen for the sun over the epicycle

آفتاب چرا بر  آنكه فلك خارج مركز جهت � فصل 2: در �

تدوير اختيار كرده اند 
Chapter 3: On the solution of the difficulty 
occurring with regard to the motion of the 
center of the lunar epicycle on the circum-
ference of the deferent, and the uniformi-
ty of that motion about the center of the 
World

فصل 3: در حلّ شكى كه بر حركت مركز تدوير ماه 

بر محيط حامل و تشابه �آن حركت بر حوالى مركز عالم 

واردست

Chapter 4: On the explanation of the circuit 
of the moon’s epicycle center and the man-
ner in which the circuit of the center of the 
lunar epicycle orb comes about

فصل 4: در شرح مدار مركز تدوير قمر و چگونگی 

حدوث مدار مركز فلك تدوير ماه

Chapter 5: On the configuration of the plan-
ets’ epicycle orbs according to the doctrine 
of Abū ʿAlī ibn al-Haytham

فصل 5: در هي�أت افلاك تداوير سسيارگان بر مذهب 

ابو على بن الهيثم

Chapter 6: On the explanation for finding 
the stationary positions of the planets on 
the epicycle orb

فصل 6: در شرح معرفت مواضع اقامت كواكب از 

فلك تدوير

Chapter 7: On clarifying the different cir-
cumstances of lunar and solar eclipses from 
the point of view of difference in latitude 
and other matters

فصل 7: در بيان تفاوت احوال خسوف وكسوف از 

جهت تفاوت عرض وغير �آن

 

Chapter 8: On conceptualizing the equation 
of time [lit.: equation of days with their 
nights]

فصل 8: در تصوير تعديل الايام بلياليها 

Chapter 9: On depicting the Indian Circle, 
the direction of a locale and other matters

فصل 9: در صورت دايرۂ هندى و سمت بلاد وغير 

�آن
What is striking about the Ḥall is the variety of the contents (one might call it a hodgepodge) 
and the fact that the most innovative part of it, i.e. that devoted to the rectilinear version of the 
Ṭūsī-couple and its use to resolve the irregular motion of the moon’s epicycle on its deferent, 
is relegated to Chapter 3. Furthermore, the curvilinear version, which is for resolving irregular 
motion resulting from Ptolemy’s latitude theory, is not presented in any way in the Ḥall; rather, 
for the problem of latitude, for which Ṭūsī would later use his curvilinear version in the Tadhkira, 
he simply presents in Chapter 5 the solution that had been proposed by Ibn al-Haytham.7

Since it is sometimes referred to as an “Appendix” (dhayl), one might assume that the Ḥall 
must have been written soon after the Muʿīniyya, especially since there is nothing in it that is 
particularly new or that had not been promised in the Muʿīniyya. Thus it comes as something of 
a surprise that the Ḥall was completed over ten years after the Muʿīniyya. The evidence for this 
comes from a manuscript witness of the Ḥall currently housed at the al-Bīrūnī Institute of Orien-
tal Studies in Tashkent, Uzbekistan [MS 8990, f. 46a (original foliation)]:8

تمت الرّساله  والحمد لله

اتفق فراغ المصنف رفع الله مراتبه فى معارج القدس من تاليفه اوايل جمادى الآخرة سسنه ۶۴۳ هجريه بمقام بلدة تون 

بالبسستان المعروف بباغ بركه 

The treatise is completed, praise be to God. The author, may God elevate his stature on the 
ascents to the Divine, completed its composition during the first part of Jamādā II, 643 of the 
Hijra, within the town of Tūn in the garden known as Bāgh Barakah. [=late October 1245]

We should note here that Ṭūsī at this time was in the employ of the Ismāʿīlī rulers of 
Qūhistān in southern Khurāsān. As stated by Farhad Daftary: “The supreme Nezārī [Ismāʿīlī] 
leader, whether dāʿī or imam, selected the local chief dāʿīs to serve in the main Nezāri territories: 
Kūhestān (Qohestān) in southern Khorasan and Syria. The chief dāʿī (often called moḥtašem [as 
is the case here]) of the Kūhestān Nezārīs usually lived in Tūn, [in] Qāʾen, or [in] the fortress of 
Moʾmenābād, near Bīrjand.”9 Tūn, today called Firdaws, lay some 80 km/50 miles west-north-
west of the main town of the region, Qāʾin. 

7  For an edition, translation and discussion of this part of the Ḥall, see Ragep 2004.

8  I thank the Bīrūnī Institute for providing images of this valuable manuscript. On the side of the last page, the 
text is said to have been collated with a copy that had been collated with a copy in the hand of the author (i.e. Ṭūsī) 
on 4 Ramaḍān 825/late August 1422 (f. 46a). The page with the colophon and copy date is reproduced in the Appen-
dix below.

9  Daftary 1993, 6.592 (col. 1). I have added a few clarifying remarks between square brackets.
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Chapter 8: On conceptualizing the equation 
of time [lit.: equation of days with their 
nights]

فصل 8: در تصوير تعديل الايام بلياليها 

Chapter 9: On depicting the Indian Circle, 
the direction of a locale and other matters

فصل 9: در صورت دايرۂ هندى و سمت بلاد وغير 

�آن
What is striking about the Ḥall is the variety of the contents (one might call it a hodgepodge) 
and the fact that the most innovative part of it, i.e. that devoted to the rectilinear version of the 
Ṭūsī-couple and its use to resolve the irregular motion of the moon’s epicycle on its deferent, 
is relegated to Chapter 3. Furthermore, the curvilinear version, which is for resolving irregular 
motion resulting from Ptolemy’s latitude theory, is not presented in any way in the Ḥall; rather, 
for the problem of latitude, for which Ṭūsī would later use his curvilinear version in the Tadhkira, 
he simply presents in Chapter 5 the solution that had been proposed by Ibn al-Haytham.7

Since it is sometimes referred to as an “Appendix” (dhayl), one might assume that the Ḥall 
must have been written soon after the Muʿīniyya, especially since there is nothing in it that is 
particularly new or that had not been promised in the Muʿīniyya. Thus it comes as something of 
a surprise that the Ḥall was completed over ten years after the Muʿīniyya. The evidence for this 
comes from a manuscript witness of the Ḥall currently housed at the al-Bīrūnī Institute of Orien-
tal Studies in Tashkent, Uzbekistan [MS 8990, f. 46a (original foliation)]:8

تمت الرّساله  والحمد لله

اتفق فراغ المصنف رفع الله مراتبه فى معارج القدس من تاليفه اوايل جمادى الآخرة سسنه ۶۴۳ هجريه بمقام بلدة تون 

بالبسستان المعروف بباغ بركه 

The treatise is completed, praise be to God. The author, may God elevate his stature on the 
ascents to the Divine, completed its composition during the first part of Jamādā II, 643 of the 
Hijra, within the town of Tūn in the garden known as Bāgh Barakah. [=late October 1245]

We should note here that Ṭūsī at this time was in the employ of the Ismāʿīlī rulers of 
Qūhistān in southern Khurāsān. As stated by Farhad Daftary: “The supreme Nezārī [Ismāʿīlī] 
leader, whether dāʿī or imam, selected the local chief dāʿīs to serve in the main Nezāri territories: 
Kūhestān (Qohestān) in southern Khorasan and Syria. The chief dāʿī (often called moḥtašem [as 
is the case here]) of the Kūhestān Nezārīs usually lived in Tūn, [in] Qāʾen, or [in] the fortress of 
Moʾmenābād, near Bīrjand.”9 Tūn, today called Firdaws, lay some 80 km/50 miles west-north-
west of the main town of the region, Qāʾin. 

7  For an edition, translation and discussion of this part of the Ḥall, see Ragep 2004.

8  I thank the Bīrūnī Institute for providing images of this valuable manuscript. On the side of the last page, the 
text is said to have been collated with a copy that had been collated with a copy in the hand of the author (i.e. Ṭūsī) 
on 4 Ramaḍān 825/late August 1422 (f. 46a). The page with the colophon and copy date is reproduced in the Appen-
dix below.

9  Daftary 1993, 6.592 (col. 1). I have added a few clarifying remarks between square brackets.
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3) The criticism of Ibn al-Haytham’s latitude model that Ṭūsī gave in the Muʿīniyya is not 
repeated in the Ḥall. Instead he presents Ibn al-Haytham’s model without commentary. This 
seems another indication that in writing the Ḥall he still had not come up with the second, 
curvilinear version of his device.

4) The model for latitude that Ṭūsī describes in the Taḥrīr al-Majisṭī is schematic at best. In 
fact, it is a rather simplistic adaptation of the rectilinear Ṭūsī-couple and very different from 
the curvilinear version given in the Tadhkira, which Ṭūsī presented as an adaptation of Ibn 
al-Haytham’s model.13

From this we can conclude that the Ṭūsī-couple, and its applications to various planetary 
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writing the Muʿīniyya, it took many years before he felt comfortable enough to present it in the 
Ḥall. And at the time of writing the Ḥall, he still had not come up with the curvilinear version. A 
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model, but it was completely unsatisfactory since it produced straight-line motion, not the need-
ed curvilinear oscillation along a great circle arc. Fifteen years later, he would bring forth both 
versions in their final form in his Arabic adaptation of the Persian Muʿīniyya, namely al-Tadhkira 
fī ʿilm al-hayʾa.  

i.e. 13°11' (Naṣīr al-Dīn al-Ṭūsī 1335 H. Sh./1956-7 CE, f. 11). It is of great historical interest that it is the Ḥall version 
of Ṭūsī’s lunar model that makes it into the Byzantine Greek work of Gregory Chioniades (d. ca. 1320) entitled the 
Schemata of the Stars, which would be available in Italy by the fifteenth century at the latest; see Ragep 2014, 242. For 
a listing of the parameters for the lunar model in the Tadhkira, see Ragep 1993, 2.457; a comparison of parameters 
between the Tadhkira and Ḥall can be found in Ragep 2017, 167.

13  Naṣīr al-Dīn al-Ṭūsī, Taḥrīr al-Majisṭī, Istanbul, Feyzullah MS 1360, ff. 199b-202a. This assessment of the model in 
the Taḥrīr al-Majisṭī, as well as the chronology of the development of the two versions of the Ṭūsī-couple, would tend 
to undermine the conclusions reached by G. Saliba 1987. A translation, edition, and analysis of the relevant parts 
of the Taḥrīr can be found in Ragep 2017, 168-171 and endnote 15. The Taḥrīr version appears in various European 
contexts, including Copernicus’s De revolutionibus, for which see Ragep 2017, 182-184. 
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Appendix

Figure 4. Colophon (boxed in red by current author) of Ḥall-i mushkilāt-i Muʿīniyya, Tashkent, al-Bīrūnī Institute of 
Oriental Studies, MS 8990, f. 46a (original foliation). Courtesy of the Institute.
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Chioniades, Gregor [George] 
© F. Jamil Ragep 

 

(The Persian translation has been published as “Khiyūniyādis [Chioniades],” in Dāʾirat al-

Maʿārif-i Buzurg-i Islāmī (Iran) [The Great Islamic Encyclopaedia], vol. 23 (Tehran: Markaz-i 

Dāʾirat al-Maʿārif-i Buzurg-i Islāmī, 1396/2018), 355-58.) 

 

Chioniades, christened George, was born sometime between 1240 and 1250 CE in 

Constantinople and became one of the leading figures in Byzantine astronomy.1 Little is known 

about his early life and education, but in 1295 he traveled to the kingdom of Trebizond, which 

was ruled at the time by Emperor John II Komnenos (reigned 1280–1297). There it is likely that 

he composed notes to John of Damascus’s (d. 749 CE) Dialectics and a work entitled On the 

Orthodox Faith. Trebizond would serve as a way station for the ultimate aim of his journey, 

which was Īlkhānid Iran; in this he was supported by Komnenos, and later that year he arrived at 

the court of Ghāzān Khān (reigned 694-703 H/1295-1304 CE) in Tabrīz. George Chrysococces 

(fl. 1350) would later relate, based on the testimony of his teacher Manuel (fl. 1330s CE), that at 

first Chioniades found it difficult to find a teacher of astronomy, since, according to Manuel, that 

was a subject restricted to Persians only. But he persevered and apparently won favor with 

Ghāzān Khān as well as with the redoubtable Rashīd al-Dīn Ṭabīb (d. 718 H/1318 CE), the 

historian, physician, and sometime minister at the court of Ghāzān. Indeed, Chrysococces 

informs us that “Chioniades shone in Persia, and was thought to be worthy of the King’s 

 
1 An important source for his life is his sixteen extant letters that have been published in Jean B. 
Papadopoulos, ed., Grigoríou Chioniádou tou astronómou epistolaí [in Greek, Modern] (Thessaloníki: 
Panepistimio Thessaloníkis, 1929) and idem, “Une lettre de Grégoire Chioniadès, évêque de Tabriz—
Rapports entre Byzance et les Mongols de Perse,” in Mélanges Charles Diehl: Études sur l’histoire et sur 
l’art de Byzance, vol. 1, Histoire (Paris: E. Leroux, 1930), 257-62. An excellent summary of what is 
known of the life of Chioniades can be found in Joseph Gerard Leichter, “The Zīj as-Sanjarī of Gregory 
Chioniades: Text, Translation and Greek to Arabic Glossary” (PhD diss., Brown University, 2004), 2-6.  
Cf. L. G. Westerink, “La profession de foi de Grégoire Chioniadès,” Revue des études byzantines 38 
(1980): 233-45; and David Pingree, “Gregory Chioniades and Palaeologan Astronomy,” Dumbarton Oaks 
Papers 18 (1964): 133-60; reprinted in Pathways into the Study of Ancient Sciences: Selected Essays by 
David Pingree, eds. Isabelle Pingree and John M. Steele, Transactions of the American Philosophical 
Society, n.s., 104, no. 3 (Philadelphia: American Philosophical Society, 2014), 365-91. See also Maria 
Mavroudi, “Exchanges with Arabic Writers During the Late Byzantine Period,” in Byzantium: Faith and 
Power (1261-1557): Perspectives on Late Byzantine Art and Culture, ed. Sarah T. Brooks (New York: 
Metropolitan Museum of Art, 2007), 62-75. 
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honour.”2 This would seem partially corroborated by the existence of a short tract by Rashīd al-

Dīn giving answers to questions posed by Chioniades on difficult physical and theological 

matters, which was later translated into Greek.3 More importantly, Chioniades was granted what 

he so much desired, namely instruction in astronomy. He tells us that his teacher was someone 

known in Greek sources as Shams Bukharos, whom we can identify as Shams al-Dīn 

Muḥammad ibn ʿAlī Khwāja al-Wābkanawī al-Munajjim (b. 652 H/1254 CE), the author of a zīj 

(astronomical handbook with tables) entitled al-Zīj al-muḥaqqaq al‐sulṭānī ʿalā uṣūl al-raṣad al-

Īlkhānī (The verified zīj for the sultan based on the principles of the Īlkhānī observations) and a 

work on the astrolabe; he is also most likely the author of a commentary on Naṣīr al-Dīn al-

Ṭūsī’s (d. 672 H/1274 CE) astronomical work al-Tadhkira fī ʿilm al-hayʾa entitled Tibyān 

maqāṣid al-Tadhkira (Exposition of the intent of the Tadhkira).4 From November 1295 until 

November 1296, Shams al-Dīn apparently dictated, in Persian, the rules for using the Zīj al-

ʿAlāʾī of ʿAbd al-Karīm al-Fahhād (fl. 1176), which Chioniades rendered into Greek as the 

Persian Astronomical Composition.5 During this period he also collected a number of works that 

he would subsequently translate into Greek.  

By September 1301, Chioniades was back in Trebizond and had returned home to 

Constantinople in April 1302. There he taught students the astronomy and medicine he had 

learned while in Persia and translated, presumably from Persian into Greek, a set of recipes for 

antidotes as well as a number of astronomical treatises. He also wrote a confession of faith, 

perhaps to counter accusations of heresy accruing from his work in astrology and his years 

 
2 For the full report by Chrysococces, see Raymond Mercier, “The Greek ‘Persian Syntaxis’ and the Zīj‐i 
Īlkhānī,” Archives internationales d’histoire des sciences 34 (1984): 35-60, on 35-36; reproduced with 
slight emendations in Leichter, “Zīj as-Sanjarī,” 3. 
3 See Zeki Velidi Togan, “İlhanlı Bizans kültür münasebetlerine dair vesikalar” (“A Document 
Concerning Cultural Relation Between the İlkhanide and Byzantiens” [sic]), İslâm Tetkikleri Enstitüsü 
Dergisi 3 (1959–60): 315-78 (= 1-39). I owe this reference to Dimitri Gutas, “Arabic into Byzantine 
Greek: Introducing a Survey of the Translations,” in Knotenpunkt Byzanz: Wissensformen und kulturelle 
Wechselbeziehungen, eds. Andreas Speer and Philipp Steinkrüger (Berlin: De Gruyter, 2012), 246-62, on 
258. 
4 On Shams al-Dīn al-Wābkanawī and his identification with Shams Bukharos, see F. Jamil Ragep, “New 
Light on Shams: The Islamic Side of Σὰμψ Πουχάρης,” in Politics, Patronage and the Transmission of 
Knowledge in 13th - 15th Century Tabriz, ed. Judith Pfeiffer (Leiden; Boston: Brill, 2014), 231-47 esp. 
243-45. 
5 David Pingree, The Astronomical Works of Gregory Chioniades, vol. 1, The Zīj al-ʿAlāʾī (Amsterdam: J. 
C. Gieben, 1985), 17-18. 
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among the Persians.6 Apparently sufficiently rehabilitated, he was appointed Bishop of Tabrīz in 

1305 and took the name Gregory, but he may not have returned to Tabrīz until about 1310. By 

1315, he was again in Trebizond, where he lived as a monk until his death around 1320.  

The known astronomical works that Chioniades either translated or reworked from Islamic 

sources are the following:7  

1) al-Zīj al-ʿAlāʾī of ʿAbd al-Karīm al-Shīrwānī al-Fahhād (ca. 1176), via a Persian version 

made by Shams al-Dīn (according to David Pingree).8 

2) An abridged version of al-Zīj al-Sanjarī of ʿAbd al-Raḥmān al-Khāzinī (ca. 1120), a 

Greek freedman of a judge in Marv; made after 1) and directly from the Arabic (according to 

Joseph Leichter).9 

3) The Īlkhānī Zīj of Naṣīr al-Dīn al-Ṭūsī. 

4) A short Syntaxis, perhaps by Shams al-Dīn al-Bukhārī. 

5) A longer Revised Canons, again perhaps by Shams al-Dīn al-Bukhārī. (Pingree takes this 

to be by Chioniades, who, he claims, was attempting to show his competence in using the 

tables of al-Zīj al-ʿAlāʾī.)10 

6) A work called Schemata of the Stars (Περὶ τῶν σχημάτων τῶν ἀστέρων).11 

7) A work on the astrolabe by Shams al-Dīn.12 

8) On the Genethlialogical Computation, probably by Shams al-Dīn, which concerns the 

horoscope of a certain Fakhr al-Dīn born in Tabrīz on 14 Dhū al-ḥijja 666 H (25 August 

1268).13 

 
6 Westerink, “La profession de foi.” 
7 All or some of these works are preserved in Vaticanus Graecus MS 211 (Rome), Vaticanus Graecus MS 
1058 (Rome), and Laurentianus MS 28, 17 (Florence). Convenient listings (complete) are in Pingree, 
Astronomical Works of Gregory Chioniades, 23-28, and Leichter, “Zīj as-Sanjarī,” 12-13 (partial, 
highlighting the works attributable to Chioniades). 
8
 Edition and translation in Pingree, Astronomical Works of Gregory Chioniades, 36-243. 

9
 Leichter, “Zīj as-Sanjarī,” 19-162 (English translation), 367-567 (Greek text). 

10
 Pingree, Astronomical Works of Gregory Chioniades, 21-22; edition and translation, 260-333. The 

work is a report by Chioniades, but it seems to be based on observations and calculations made by Shams 
al-Dīn. 
11

 Edition and translation in E. A. Paschos and P. Sotiroudis, The Schemata of the Stars: Byzantine 
Astronomy from A.D. 1300 (Singapore; River Edge, NJ: World Scientific, 1998), 26-53. 
12 The Greek version of the introduction has been edited and translated into English by Elizabeth A. 
Fisher, “Arabs, Latins and Persians Bearing Gifts: Greek Translations of Astrolabe Treatises, ca. 1300,” 
Byzantine and Modern Greek Studies 36, no. 2 (2012): 161-77. 
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As for the first three zījes, one is struck by the fact that all were considerably out of date by 

the 1290s. The zījes of Fahhād and Khāzinī had certainly been superseded by the Īlkhānī Zīj, 

which itself had been made obsolete by the zījes of Muḥyī al-Dīn al-Maghribī (d. 1283), which, 

unlike Ṭūsī’s Īlkhānī Zīj, incorporated the latest observations made at Marāgha.14 It is not clear 

why these zījes were chosen, but they may have been more “elementary” in some sense. Pingree 

notes that when translating al-Zīj al-ʿAlāʾī, Chioniades displays a remarkable degree of 

ignorance, often transcribing Persian words into Greek when he did not understand the content.15 

But Leichter (the editor and translator into English of the Greek version of the Sanjarī Zīj) has 

noted an improvement in Chioniades’s knowledge, this time presumably in Arabic, when 

translating the Sanjarī Zīj.16 Of considerable importance in determining how far along 

Chioniades got in his apprenticeship into Islamic astronomy is whether the purported works of 

Shams al-Dīn (the short Syntaxis and the longer Revised Canon), which are found in Greek 

translation in some of the manuscripts, contain any of the newer material from the Marāgha and 

Tabrīz observations and whether the Persian Syntaxis of Chrysococces, which he says comes 

from the work of Chioniades, contains this new material. Raymond Mercier has claimed, 

somewhat unconvincingly, that the Persian Syntaxis of Chrysococces was mostly derived from 

the Īlkhānī Zīj, but this was disputed by Pingree, who held that there is substantial evidence that 

Chrysococces used the ʿAlāʾī  and Sanjarī zījes, in addition to the Īlkhānī Zīj, all of which were 

translated by Chioniades.17 But neither seems to have considered that Chrysococces, and 
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necessary in order to resolve some of these issues. The Greek translation of the astrolabe treatise 

purportedly by Shams al-Dīn (no. 7) still awaits comparison with the Persian astrolabe treatise 

 
13

 Edition and translation in Pingree, Astronomical Works of Gregory Chioniades, 242-59. 
14

 See George Saliba, A History of Arabic Astronomy: Planetary Theories during the Golden Age of Islam 
(New York: New York University Press, 1994), 163-86, 208-30. 
15

 Pingree, Astronomical Works of Gregory Chioniades, 18-21. 
16

 Leichter, “Zīj as-Sanjarī,” 11-12. 
17

 See Mercier, “The Greek ‘Persian Syntaxisʾ.” Pingree responded to Mercier in his “In Defence of 
Gregory Chioniades,” Archives internationales d’histoire des sciences 35, nos. 114/115 (1985): 436-38. 
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contained in Istanbul, Topkapı, Ahmet III 3327 and attributed to Shams al-Dīn al-Wābkanawī. 

The identity of Fakhr al-Dīn in no. 8 has yet to be determined. 

Treatise no. 6 has attracted considerable interest since Otto Neugebauer pointed out that it 

contained a diagram of the so-called Ṭūsī-couple of Naṣīr al-Dīn al-Ṭūsī, a device for producing 

oscillating rectilinear motion from two circular motions;18 its various versions were used by Ṭūsī 

in a number of ways, in particular to deal with the irregular (and thus unacceptable) motion 

brought about by Ptolemy’s (fl. 140 CE) equant model. Later it was used by Copernicus (d. 1543 

CE) in several of his astronomical models. The existence of such a device in a “western” 

language that had clearly come from an Islamic source was evidence used by Noel Swerdlow 

and Neugebauer to advocate their position that Copernicus was indebted to Islamic astronomy 

for a number of his models.19 Recently it has been shown that this work by Chioniades, the 

Schemata of the Stars, is derived from two Persian works of Ṭūsī, his Risāla-yi Muʿīniyya and its 

appendix, the Ḥall-i mushkilāt-i Muʿīniyya.20 In particular, the versions of the Ṭūsī-couple and 

the lunar model found in the Schemata are the ones found in the Ḥall and are not in either of 

Ṭūsī’s later Arabic works, the Taḥrīr al-Majisṭī or al-Tadhkira fī ʿilm al-hayʾa. Another 

interesting aspect of the Schemata is that Chioniades has faithfully followed the star listings in 

the Muʿīniyya; in fact, he uses corrupted forms of Greek names that had entered Arabic with the 

translations from Greek in the ninth century instead of their correct Greek forms. A rather 

striking example of this is that Chioniades names a northern constellation κακκαοῦς rather than 

the correct Greek name Κηφεύς, clearly indicating that he is simply copying the corrupted 

Arabic name qayqāwus (قيقـاوس), which is a simple mistake for what should have been the correct 

transcription, namely (قيفــاوس). Pingree notes other cases of transcription of Arabic/Persian 

terminology when Chioniades did not know the meanings or equivalents in Greek.21  

This raises the question of how well Chioniades knew Persian or Arabic. As previously noted, 

it would seem, based on evidence compiled by Pingree and also the fact that he uses the Persian 

Muʿīniyya rather than its updated Arabic version, i.e., the Tadhkira, that Chioniades and/or 

Shams al-Dīn preferred using Persian over Arabic. This may well reflect the cultural interactions 

 
18 Otto Neugebauer, A History of Ancient Mathematical Astronomy, 3 parts (Berlin; New York: Springer-
Verlag, 1975), 2:1035. 
19 N. M. Swerdlow and O. Neugebauer, Mathematical Astronomy in Copernicus’s De Revolutionibus, 2 
parts (New York: Springer-Verlag, 1984), 1:47-48.  
20 For further details, see Ragep, “New Light on Shams,” 238-43. 
21 Pingree, Astronomical Works of Gregory Chioniades, 18-21. 
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18 Otto Neugebauer, A History of Ancient Mathematical Astronomy, 3 parts (Berlin; New York: Springer-
Verlag, 1975), 2:1035. 
19 N. M. Swerdlow and O. Neugebauer, Mathematical Astronomy in Copernicus’s De Revolutionibus, 2 
parts (New York: Springer-Verlag, 1984), 1:47-48.  
20 For further details, see Ragep, “New Light on Shams,” 238-43. 
21 Pingree, Astronomical Works of Gregory Chioniades, 18-21. 
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between the Byzantines and Iranians during this period. But Leichter, as we have seen, claims 

that Chioniades may have competently translated the Zīj al-Sanjarī from Arabic, which would 

indicate an improvement in his language skills from his initial work on the al-Zīj al-ʿAlāʾī.  

During his lifetime, Chioniades was evidently a significant figure in the political and religious 

interactions between the Byzantine and Īlkhānid realms. Though not an original or creative 

scholar, his translations played an important role in the transmission of Islamic astronomy to 

Byzantium and Latin Europe, and they were to influence not only later Byzantine scholars such 

as George Chrysococces and Theodore Meliteniotes (d. 1393) but scholars in Latin Europe as 

well. 

 



NEW LIGHT ON SHAMS:
THE ISLAMIC SIDE OF ΣÀΜΨ ΠΟΥΧÁΡΗΣ

F. Jamil Ragep

I. Introduction

In 1295, a certain Gregory Chioniades 1 of Constantinople  traveled to the 
kingdom of Trebizond , ruled at that time by its emperor John II Komnenos  
(reigned 1280–1297), from where he would embark upon a momentous 
journey to the land of the Persians. Chioniades seems to have had a way 
with rulers, for having found favor with Komnenos, he then traveled to 
Persia, most likely just after the accession to the Ilkhan throne by Ghazan  
Khan, who had recently converted to Islam. A generation later, George 
Chrysococces  (fl. 1350), who had also traveled to Trebizond in hopes of 
learning the astronomy  of the Persians, was told the following story by 
his teacher Manuel:

. . . in a short while he [i.e. Chioniades] was taught by the Persians, having 
both consorted with the King, and met with consideration from him. Then 
he desired to study astronomical matters, but found that they were not 
taught. For it was the rule with the Persians that all subjects were available 
to those who wished to study, except astronomy , which was for Persians 
only. He searched for the cause, which was that a certain ancient opinion 
prevailed among them, concerning the mathematical  sciences, namely, that 
their king will be overthrown by the Romans, after consulting the practice 
of astronomy, whose foundation would fĳirst be taken from the Persians. He 
was at a loss as to how he might come to share this wonderful thing. In 
spite of being wearied, and having much served the Persian king, he had 
scarcely achieved his objective; when, by Royal command, the teachers were 
gathered. Soon Chioniades shone in Persia, and was thought worthy of the 

1 An excellent summary of what is known of the life of Chioniades can be found in 
Joseph Gerard Leichter, “The Zīj as-Sanjarī of Gregory Chioniades : Text, Translation and 
Greek  to Arabic Glossary” (Unpublished Ph.D. Dissertation, Brown University, 2004), 2–6. 
Cf. L.G. Westerink, “La profession de foi de Gregoire Chioniades,” Revue des études byzan-
tines 38 (1980): 233–245; and David E. Pingree, “Chioniades, Gregory,” in Oxford Dictionary 
of Byzantium , ed. Alexander P. Kazhdan (New York: Oxford University Press, 2002), 422–
423. See also Maria Mavroudi, “Exchanges with Arabic Writers during the Late Byzantine 
Period,” in Byzantium: Faith and Power (1261–1557): Perspectives on Late Byzantine Art and 
Culture, ed. Sarah Brooks (New York: Metropolitan Museum of Art, 2007), 62–75.
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King’s honor. Having gathered many treasures, and organized many subor-
dinates, he again reached Trebizond , with his many books on the subject 
of astronomy. He translated these by his own lights, making a noteworthy 
efffort. There are in fact other books of the Persian Syntaxis  which he trans-
lated, those having certain examples with the years systematically at the 
beginning. However, he handed on the Syntaxis alone, the best and most 
accurate of all, as our teacher said, who appeared to be telling the truth. He 
translated separately the commentary, which was taken from the Persians 
by word of mouth alone. In this way, the Syntaxis, called the Handy, was 
produced.2

From this account, we can gather that the Persian Syntaxis  of Chrysococces 
is somehow based on the work of Chioniades and that the latter went to 
some city in Persia to obtain the necessary learning and materials. From 
letters of Chioniades, we know that the city in question was the Mongol  
capital, Tabriz .3 Furthermore, in the introduction to his translation of a 
work that Pingree tells us is related to the Zīj al-ʿAlāʾī  of ʿAbd al-Karīm 
al-Fahhād  (fl. 1176), we learn that Chioniades studied with a certain Shams 
Bukharos ,4 about whom the author of a recent article states: “There is 
nothing known of him in Persian or Arabic sources, nor is there any 
known reference to him outside the Greek  work just mentioned.”5 The 
purpose of this paper is to try to uncover some information about this 
elusive Shams, who undertook to teach the Greek  Chioniades astronomy  
and provide him with valuable texts, despite whatever reservations Shams 
and others in Tabriz may have had. But fĳirst we will need to explore the 
intellectual context of Tabriz in which this transmission took place and 
the sources of some of the material Chioniades took back with him to 
Byzantium .

II. The Tabriz  Context

What was the state of astronomy  in and around Tabriz  at the end of the 
thirteenth century? Tabriz was the inheritor of the Marāgha  scientifĳic tra-
dition and observatory , which had been established in Azerbaijan  after 

2 Raymond Mercier, “The Greek  ‘Persian Syntaxis ’ and the Zīj-i Īlkhānī,” Archives inter-
nationales d’histoire des sciences 34 (1984): 35–36; reproduced in Leichter, “Zīj as-Sanjarī,” 3.

3 Leichter, “Zīj as-Sanjarī,” 3.
4 David Pingree, The Astronomical Works of Gregory Chioniades , vol. 1: The Zīj al-ʿAlāʾī  

(Amsterdam: J.C. Grieben, 1985), 36–37.
5 Raymond Mercier, “Shams al-Dīn al-Bukhārī ,” in The Biographical Encyclopedia of 

Astronomers, eds. Thomas Hockey et al. (New York: Springer, 2007), 1047.
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the Mongol  conquests of the 1250s. The Marāgha Observatory  had been 
built with the active support of the Mongol ruler Hülegü  Khan, who made 
the redoubtable Naṣīr al-Dīn al-Ṭūsī  its founding director. Thanks to the 
work of Aydın Sayılı and excavations carried out at the site, we know 
quite a bit about this observatory, which, as far as we can determine, was 
the fĳirst large-scale observatory ever built and was to be the model for 
similar, big-science initiatives in the centuries to come, whether in China , 
in Central Asia, in India , or in Europe.6

It is not clear, however, when the Marāgha  observatory  ceased function-
ing as an active scientifĳic institution (as opposed, say, to a tourist attrac-
tion that led Tīmūr Lang to take a detour during one of his expeditions in 
order to show his grandson Ulugh Beg the remains of the observatory).7 
This has considerable signifĳicance as we try to reconstruct the chronology 
of events that led Tabriz  to become the major center of global science by 
the time Chioniades arrived there in 1295.

Now this is what we can reconstruct: From what we gather from the 
zīj (astronomical handbook) of a certain Shams al-Dīn al-Wābkanawī  
(about whom more later), which was mostly compiled under Öljeytü  
(r. 703–716/1304–1316), but not completed until sometime during the reign 
of Abū Saʿīd  Bahadur Khan (r. 716–736/1316–1335), the Marāgha  observa-
tory  seems to have ceased operations a few years (exactly how many 
being unclear) after the death in 1274 of Naṣīr al-Dīn al-Ṭūsī . According to 
Wābkanawī , the zījes of Muḥyī al-Dīn ibn Abī al-Shukr al-Maghribī  used 
the Marāgha observations, which Ṭūsī, for whatever reasons, had not been 
able to incorporate into the Īlkhānī Zīj  (completed sometime in the late 
1260s). Now since Maghribī died in Marāgha in June 1283, and we have no 
fĳirm indications of observations or activity at the Marāgha observatory 
after that date, it seems likely that we can take 1283 as the terminus ad 
quem. And Wābkanawī  makes it clear that the Marāgha observatory did 

6 Aydın Sayılı, The Observatory in Islam and Its Place in the General History of the 
Observatory (Ankara: Türk Tarih Kurumu Basımevi, 1960); and Parvīz Varjāvand, Kāvish-i 
raṣadkhāna-i Marāgha  (Tehran: Amīr Kabīr, 1366 H.Sh [1987 CE]).

7 This is mentioned in a letter by the eminent mathematician Jamshīd al-Kāshī, who 
was a member of Ulugh Beg’s scientifĳic entourage; see Edward S. Kennedy, “A Letter of 
Jamshīd al-Kāshī to His Father: Scientifĳic Research and Personalities at a Fifteenth Century 
Court,” Orientalia 29 (1960): 196, 208–209 (reprinted in E.S. Kennedy et al., Studies in the 
Islamic Exact Sciences, eds. David A. King and Mary Helen Kennedy (Beirut: American 
University of Beirut, 1983), 722–744).
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not reach its goal of a 30-year observational period, which would have 
ended around 1289.8

This dating has implications for what scientifĳic activity Chioniades may 
have found when he came to Azerbaijan  in 1295. Given the testimony of 
Wābkanawī , it seems that the Marāgha  observatory  was no longer an 
ongoing concern. But we know from Rashīd al-Dīn  that Ghazan  Khan vis-
ited the Marāgha observatory on numerous occasions, and in particular in 
the spring of 1300 when returning from an expedition to Syria . He is said 
to have shown great interest in the observatory, asked many questions 
and then ordered his own observatory to be built in the extensive com-
plex of Abwāb al-Birr  in Sham, a suburb of Tabriz .9 But let us consider the 
dates. If there was no functioning Marāgha observatory in 1295, and the 
Tabriz observatory lay in the future, what was it that brought Chioniades 
to Tabriz? Here, I think, we can safely guess that Tabriz, under Ghazan  or 
before, had gained a justifĳied reputation as a major center of scientifĳic, 
and in particular astronomical, learning and research even without an 
observatory.

Although this period of the history of science in Islam has been some-
what downplayed (being in the shadow of the so-called Marāgha  school), 
there is accumulating evidence that the time in which Chioniades vis-
ited Tabriz  was one of intense activity. We know, for example, that Quṭb 
al-Dīn al-Shīrāzī  arrived in Tabriz sometime in 1290 (or shortly thereafter) 
after serving as a Mongol  emissary in Egypt  and as chief judge in Malaṭya 
and Sivas  in Anatolia , where he wrote several major works on astrono-
my .10 It is in Tabriz that he most likely wrote his Faʿalta fa-lā talum  (“You 
have done it so don’t impugn!”), one of the most remarkable works in the 
entire history of Islamic science. In it he lambasts a certain al-Ḥimādhī , 
who had dared criticize him and, adding salt to the wound, had allegedly 
plagiarized large chunks of Shīrāzī’s al-Tuḥfa al-shāhiyya , an astronomical 

  8 Shams al-Dīn al-Wābkanawī , al-Zīj al-muḥaqqaq al-sulṭānī ʿalā uṣūl al-raṣad 
al-Īlkhānī , Istanbul , Süleymaniye Library, Ayasofya MS 2694, fff. 2a, 3a. On Maghribī, see 
Mercè Comes, “Ibn Abī al-Shukr,” in The Biographical Encyclopedia of Astronomers, eds. 
Thomas Hockey et al. (New York: Springer, 2007), 548–549. On his astronomical obser-
vations, see George Saliba, A History of Arabic Astronomy: Planetary Theories during the 
Golden Age  of Islam (New York: New York University Press, 1994), 163–176, 177–186, 208–
230. Cf. Sayılı, The Observatory in Islam, 204, 211–218.

  9 Sayılı, The Observatory in Islam, 227.
10 On Shīrāzī, see F. Jamil Ragep, “Shīrāzī,” in The Biographical Encyclopedia of 

Astronomers, eds. Thomas Hockey et al. (New York: Springer, 2007), 1054–1055.
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work completed in Sivas in 1285. In the introduction, Shīrāzī mentions 
several individuals who formed, it seems, part of an extensive network of 
scientists centered in Tabriz. This included Shams al-Dīn (or perhaps Jalāl 
al-Dīn) al-ʿUbaydī , Jamāl al-Dīn al-Turkistānī , and Kamāl al-Dīn al-Fārisī , 
not to mention the hapless al-Ḥimādhī .11 And Ghazan  Khan, we are told 
by Rashīd al-Dīn , was something of an astronomer himself.12 We also 
know that others would later be attracted to Tabriz, among whom was 
Niẓām al-Dīn al-Nīsābūrī , who arrived sometime between 1304 and 1306.13

So in putting the pieces together, we come up with the following. 
Chioniades arrives in Tabriz  in 1295, attracted both by the resurgence in 
Azerbaijan  of the study of astronomy , which he longed to master, and the 
sympathetic attitude of the early Ilkhanids toward Christians . But even 
with Ghazan ’s ascension and conversion to Islam , Chioniades seems to 
have been well received in the court, which prided itself on its cosmopoli-
tanism. Indeed Rashīd al-Dīn  remarks: “There were gathered under the 
eyes of the pādishāh of Islam philosophers , astronomers , scholars, histori-
ans , of all religions, of all sects, people of Cathay, of Machin (South China ), 
of India , of Kashmir, of Tibet , of the Uyghur, and other Turkish nations, 
Arabs and Franks.”14 And there is some evidence that Rashīd al-Dīn him-
self wrote answers to questions posed by Chioniades on difffĳicult physical 
and theological  matters, which were then translated into Greek .15 And 
he seems to have been assigned, after some initial hesitation, to a tutor 
who undertook to allow Chioniades to gain the astronomy of his ancient 
Greek  forebears, though admittedly, as we shall see, with a heavy dose of 
Islamic coloring.

11  Quṭb al-Dīn al-Shīrāzī , Faʿalta fa-lā talum , Tehran, Majlis-i Shūrā MS 3944, fff. 5b, 7b, 
9a.

12 Sayılı, The Observatory in Islam, 227–229.
13 On Nīsābūrī, see Robert G. Morrison, Islam and Science: The Intellectual Career of 

Niẓām Al-Dīn Al-Nīsābūrī (London; New York: Routledge, 2007).
14 Sayılı, The Observatory in Islam, 230.
15 Zeki Velidi Togan, “İlhanlı Bizans kültür münasebetlerine dair vesikalar” (“A 

Document concerning Cultural Relation between the İlkhanide and Byzantiens” [sic]), 
İslâm Tetkikleri Enstitüsü Dergisi 3 (1959–60): 315–378 (= 1–39). I owe this reference to 
Dimitri Gutas, “Arabic into Byzantine Greek : Introducing a Survey of the Translations,” 
in Knotenpunkt Byzanz: Wissensformen und kulturelle Wechselbeziehungen, eds. Andreas 
Speer and Philipp Steinkrüger (Berlin: De Gruyter, 2012), 258.
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III. Chioniades as Transmitter of Islamic Astronomy

Chioniades returned to Trebizond  in the late 1290s and was in Constan-
tinople  by April 1302. There he translated, presumably from Persian into 
Greek , a set of recipes for antidotes as well as a number of astronomical 
treatises, and wrote a confession of faith, evidently to counter accusations 
of heresy accruing from his work in astrology and his years among the 
Persians. Apparently sufffĳiciently rehabilitated, he was appointed Bishop of 
Tabriz  in 1305 and took the name Gregory, but he may not have returned 
to Tabriz until about 1310. By 1315, he was again in Trebizond, where he 
lived as a monk until his death around 1320.16

What did Chioniades gain from his time in Tabriz ? Thanks to the work 
of Otto Neugebauer, David Pingree and others, we know that Chioniades 
obtained access to several astronomical works and translated (or reworked 
them) into Greek .17 These included:18

1) al-Zīj al-ʿAlāʾī  of ʿAbd al-Karīm al-Shīrwānī al-Fahhād  (ca. 1150), via a 
Persian version made by Shams al-Dīn (according to Pingree).19

2) An abridged version of al-Zīj al-Sanjarī  of ʿAbd al-Raḥmān al-Khāzinī  
(ca. 1120), a Greek  freedman of a judge in Marv; made after 1) and 
directly from the Arabic (according to Leichter).20

3) The Īlkhānī Zīj  of Naṣīr al-Dīn al-Ṭūsī.
4) A short Syntaxis, perhaps by Shams al-Dīn al-Bukhārī .
5) A longer Revised Canons, again perhaps by Shams al-Dīn al-Bukhārī . 

(Pingree takes this to be by Chioniades, who, he claims, was attempt-
ing to show his competence in using the tables of al-Zīj al-ʿAlāʾī .)21

16 Leichter, “Zīj as-Sanjarī,” 3–6; Pingree, “Chioniades,” 422–423.
17 A by now classic work on the subject is David Pingree, “Gregory Chioniades  and 

Palaeologan Astronomy,” Dumbarton Oaks Papers 18 (1964): 133–160. Pingree amplifĳies his 
fĳindings in his Astronomical Works of Gregory Chioniades  and in his “In Defence of Gregory 
Chioniades ,” Archives internationales d’histoire des sciences 35 (1985): 436–438.

18 All or some of these works are preserved in Vaticanus Graecus MS 211  (Rome ), 
Vaticanus Graecus MS 1058 (Rome), and Laurentianus MS 28, 17 (Florence). Convenient 
listings (complete) are in Pingree, Astronomical Works of Gregory Chioniades , 23–28, 
and Leichter, “Zīj as-Sanjarī,” 12–13 (partial, highlighting the works attributable to 
Chioniades).

19 Edition and translation in Pingree, Astronomical Works of Gregory Chioniades , 
36–243.

20 Edition and translation in Leichter, “Zīj as-Sanjarī,” 19–162, 367–567.
21 Pingree, Astronomical Works of Gregory Chioniades , 21–22; edition and translation, 

260–333. The work is a report by Chioniades, but it seems to be based on observations and 
calculations made by Shams al-Dīn.
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6) A work called Schemata of the Stars  (Περὶ τῶν σχημάτων τῶν 
ἀστέρων) .22

7) A work on the astrolabe by Shams al-Dīn.
8) On the Genethlialogial Computation , probably by Shams al-Dīn, which 

concerns the horoscope of a certain Fakhr al-Dīn born in Tabriz  on 
25 August 1268.23

As for the fĳirst 3 zījes (astronomical handbooks with tables), one is struck 
by the fact that all were considerably out of date by the 1290s. The zījes 
of Fahhād and Khāzinī had certainly been superseded by the Īlkhānī Zīj , 
which itself had been made obsolete by the zījes of al-Maghribī, which, 
unlike Ṭūsī’s Īlkhānī Zīj, incorporated the latest observations made at 
Marāgha .24 Was this because Shams al-Dīn was withholding the latest 
fĳindings from a potential Rūmī adversary (as implied by Chrysococces) 
or was this simply a matter of Chioniades needing to learn the more 
elementary material before embarking on cutting-edge research? Pingree 
notes that when translating al-Zīj al-ʿAlāʾī , Chioniades shows a remarkable 
degree of ignorance, often transcribing Persian words into Greek  when 
he didn’t understand the content.25 But Joseph Leichter (the editor and 
translator of the Greek  version of the Sanjarī Zīj) has noted an improve-
ment in Chioniades’s knowledge, this time presumably in Arabic, when 
translating the Sanjarī zīj.26 Of considerable importance in determining 
how far along Chioniades got in his apprenticeship into Islamic astron-
omy  is whether the purported works of Shams al-Dīn (the short Syntaxis 
and the longer Revised Canon), which are found in Greek  translation in 
some of the manuscripts, contain any of the newer material from the 
Marāgha and Tabriz observations and whether the Persian Syntaxis  of 
Chrysococces, which he says comes from the work of Chioniades, contains 
this new material. Raymond Mercier has claimed, somewhat unconvinc-
ingly, that the Persian Syntaxis of Chrysococces was mostly derived from 
the Īlkhānī Zīj, but this was disputed by Pingree, who held that there is 
substantial evidence that Chrysococces used the ʿAlāʾī and Sanjarī zījes, 

22 Edition and translation in E.A. Paschos and P. Sotiroudis, The Schemata of the Stars : 
Byzantine Astronomy from A.D. 1300 (Singapore; River Edge, NJ: World Scientifĳic, 1998), 
26–53.

23 Edition and translation in Pingree, Astronomical Works of Gregory Chioniades , 
242–259.

24 See Saliba, A History of Arabic Astronomy.
25 Pingree, Astronomical Works of Gregory Chioniades , 18–21.
26 Leichter, “Zīj as-Sanjarī,” 11–12.
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in addition to the Īlkhānī Zīj, all of which were translated by Chioniades.27 
But neither seems to have considered that Chrysococces, and Chioniades 
himself, may have used sources and observations post-dating the Īlkhānī 
Zīj, whether from someone like Maghribī or from Shams al-Dīn himself. 
A fresh examination of the works attributed to Shams al-Dīn, along with 
a comparison of contemporaneous works in Arabic and Persian, is neces-
sary in order to resolve some of these issues.

We can gain some additional insight into the question of what Chioniades 
learned in Tabriz  from the examination of another of the treatises listed 
above, namely no. 6. This work has been dubbed “The Schemata of the 
Stars” and also an ʿilm  al-hayʾa  text, i.e. a work of theoretical astronomy  
that seeks to provide a cosmography (or hayʾa) of the Universe.28 These 
works are well known to us in Islamic sources, and include the twelfth-
century texts of al-Kharaqī , several writings by Sharaf al-Dīn Maḥmūd 
al-Jaghmīnī , Naṣīr al-Dīn al-Ṭūsi and Quṭb al-Dīn al-Shīrāzī  from the thir-
teenth century, and numerous commentaries and supercommentaries on 
these works, as well as original compilations, in the following centuries.29 
But compared to a true hayʾa work, this Schemata is rather curious. For 
starters, it is quite short in comparison with Islamic works of this genre: 
in its extant three witnesses, it occupies about ten folios (only six in one 
Vatican witness). In comparison, Ṭūsī’s al-Tadhkira fī ʿilm al-hayʾa  aver-
ages about 70–80 folios, while Shīrāzī’s ponderous tomes can be over two 
hundred!

The authors of a recent edition and translation of this work, E.A. Paschos 
and P. Sotiroudis, have insisted that it represents a completely independent 
work by a Byzantine author (they presume Chioniades) who has adapted 
and improved material from Islamic sources.30 On the other hand, most 
other recent scholars who have discussed this work have assumed that it 
derives from Naṣīr al-Dīn al-Ṭūsī’s Tadhkira.31 Much of the material in the 
Schemata follows, more or less, material that can be found in the Tadhkira, 
and the Schemata’s model for the moon  implicitly employs a Ṭūsī-couple , 

27 See Raymond Mercier, “The Greek  ‘Persian Syntaxis ’,” 35–60. Pingree responded to 
Mercier in his “In Defence of Gregory Chioniades .”

28 Paschos and Sotiroudis refer to it as The Schemata of the Stars ; Pingree and Leichter 
call it a hayʾa text in their listing of works due to Chioniades.

29 On the hayʾa tradition in Islam, see F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī ’s Memoir on 
Astronomy (New York: Springer-Verlag, 1993), 1: 24–53.

30 Paschos and Sotiroudis, The Schemata, 17.
31  N.M. Swerdlow and O. Neugebauer, Mathematical Astronomy in Copernicus ’s De 

Revolutionibus  (New York: Springer-Verlag, 1984), 1: 47–48.
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a device invented by Naṣīr al-Dīn that produces straight-line oscillation 
from two interconnected rotating circles or spheres.32 And in one manu-
script (Vaticanus Graecus MS 211 ), there are diagrams of the Ṭūsī-couple 
and Ṭūsī’s lunar model (fff. 116–117). But as I said, the resemblance is more 
or less. There are many odd diffferences between the Schemata and the 
Tadhkira: for example, the former has a complete list of constellations 
with the numbers of stars in each constellation, which is not given in the 
Tadhkira. Now one might think that this was an addition by Chioniades 
based on Ptolemy ’s Almagest , to which he presumably had access in the 
original. But there are a number of clues that point to a diffferent source. 
For example, the constellation names are in several cases taken from 
Arabic, which themselves, of course, were translations and adaptations of 
the original Greek . A rather striking example of how a corrupt Arabic form 
could displace the original Greek  is given by the northern constellation 
Cepheus (Κηφεύς). Now in most Arabic and Persian texts, one fĳinds this 
mistakenly transcribed as qayqāwus  ( ) rather than (  ), pre-
sumably reflecting some scribal error that occurred in the transmission 
of the translations of Ptolemy’s Almagest from the 9th century. What is 
striking is that Chioniades, a native Greek , dutifully lists this as κακκαοῦς, 
seemingly unaware that this is actually a mistranscription of the Greek  
Κηφεύς. (A number of other examples could be given, e.g. Βοώτης is called 
ἀουάς, reflecting the Arabic [  ]).33 It is clear then that Chioniades must 
be using an Islamic source for his listing of constellations, since an origi-
nal Greek  source is obviously excluded.34 There are other indications that 
the Schemata is based on sources other than the Tadhkira. In his section 
on the sun, Chioniades very idiosyncratically opts for a deferent and epi-
cycle  model,35 which is contrary to the choice of eccentric model used 
by Ptolemy, Ṭūsī and almost everyone else. Why he did so is not clear 
though a discussion of such a model is given by Ṭūsī as well as by Quṭb 
al-Dīn al-Shīrāzī .36

32 On the Ṭūsī couple, see Ragep, Naṣīr al-Dīn, 2: 427–457.
33 Paschos and Sotiroudis, The Schemata, 32. For a listing of these constellations in an 

Arabic hayʾa text, see Ragep, Naṣīr al-Dīn, 1: 129 and 2: 411 for a brief discussion.
34 The Schemata also gives a diffferent number for stars associated with some constel-

lations from what one fĳinds in the Almagest ; see example 2) below dealing with Ursa 
Major.

35 Paschos and Sotiroudis, The Schemata, 38–43.
36 Ragep, Naṣīr al-Dīn, 1: 144–145; Shīrāzī, Nihāyat al-idrāk fī dirāyat al-aflāk, Istanbul , 

Ahmet III MS 3333, f. 68a–b. Shīrāzī indicates that some astronomers  had chosen an epi-
cycle  model for the sun, but it is not clear to whom he is referring.
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Finally there is the case of Ṭūsī’s famous lunar model, which incorpo-
rated his Ṭūsī couple. There are signifĳicant diffferences in the Schemata 
with the model presented in the Tadhkira, most strikingly that the defer-
ent (ḥāmil) of the Tadhkira, in which the Ṭūsī-couple  device is placed, 
has been replaced by an inclined orb that incorporates the motions of the 
deferent and inclined orbs  of the Tadhkira models. Furthermore, from the 
diagrams found in at least one manuscript of the Schemata, one can see 
that the couple is rotating in the opposite sense from that in diagrams 
found in manuscripts of the Tadhkira.

I was initially inclined to think that this was an adaptation by Shams 
al-Bukhārī, who may have been influenced by some of the new mod-
els presented by Quṭb al-Dīn al-Shīrāzī  in his work. In any event, I had 
assumed that the Schemata was somehow based upon a newer, more up-
to-date hayʾa work that had been produced after Ṭūsī’s death. But follow-
ing up on a suggestion by S. Ragep, I discovered, much to my surprise, that 
the Schemata is mostly a translation of fragments from another work by 
Ṭūsī, namely the Risāla-yi Muʿīniyya , which he wrote in 1235, when at the 
Ismaʿili  court in Qūhistān , long before the coming of the Ilkhanids and the 
writing of the Tadhkira.37 A few examples should sufffĳice to establish this, 
at least in a preliminary way:

1. From Risāla-yi Muʿīniyya , Part I, Chapter 2:38
A body is either simple or composite. A simple is that which is not made 
up of bodies of diffferent natures or forms. A composite is the opposite. 
Necessarily composites are composed of simples. Simples are of two types: 
celestial and elemental. The celestials are all the orbs  and stars. The elemen-
tals are those fourfold substances that are the basis of the world of gen-
eration and corruption, i.e., fĳire, air, water and earth. The composites are 
of four types: (a) that whose composition is not complete, such as clouds, 
wind, shooting stars and the like. These are called upper phenomena; 

37 On the Risāla-yi Muʿīniyya  and its appendix, the Ḥall-i mushkilāt-i Muʿīniyya, see 
Ragep, Naṣīr al-Dīn, 1: 65–70; idem, “The Persian Context of the Ṭūsī Couple,” in Naṣīr 
al-Dīn al-Ṭūsī : Philosophe et Savant du XIIIe Siècle, eds. N. Pourjavady and Ž. Vesel (Tehran: 
Institut français de recherche en Iran /Presses universitaires d’Iran, 2000), 113–130 ; and 
idem, “The Origins of the Ṭūsī Couple Revisited,” forthcoming in a volume of conference 
essays devoted to Naṣīr al-Dīn al-Ṭūsī , to be published by Mīrāth-i Maktūb (Tehran). 
Wheeler Thackston and I are in the process of completing an edition and translation of 
the Risāla-yi Muʿīniyya and Ḥall-i mushkilāt-i Muʿīniyya, which should appear in 2014.

38 Naṣīr al-Dīn al-Ṭūsī , Risāla-yi Muʿīniyya , facsimile of Tehran, Malik MS 3503 with an 
introduction by Muḥammad Taqī Dānish-Pazhūh (Tehran: Intishārāt-i Dānishgāh-i Tihrān 
(no. 300 in the series), 1335 H.Sh./1956–7 A.D.), 8; translation due to Wheeler Thackston, 
Sergei Tourkin, and Jamil Ragep.
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(b) that whose composition is complete, i.e., it can remain for a period of 
time and have the capacity to retain its shape or form, but it is not subject 
to growth. This is called mineral; (c) that whose composition is complete 
but nonetheless has the capacity to grow. This is called vegetal; (d) that 
which has the capacity for growth and the capacity for perception and vol-
untary movement. This is called animal. The latter three types are called 
the three engendered [kingdoms]: the fourfold elements are the mothers 
of these engendered, and the celestial bodies  are the fathers. The elements 
and composites are called lower bodies, and the orbs  and stars are called 
the upper bodies.

From The Schemata of the Stars (introduction):39
The [celestial] body is divided into two [entities], simple and composite, as 
is the case with the four elements, simple and com posite; each of them is 
thus called simple element. It became evident from what we know and com-
prehend that the sky is circular. On the other hand, the elements are four: 
fĳire, air, water and earth; if something is composite then it is none of these.
The entities beyond the elements are classifĳied into two groups: one group 
where the mixing is not perfect, so that when mixing takes place the com-
position does not survive [for a long time]; examples are air and clouds and 
thunderbolts. The other group is the one in which mixing is perfect; when 
mixing takes place, the composition lasts for a long time. There are three 
such things; fĳirst the one which is produced and cannot develop any further, 
as is the case with metals; second the composed [substance] has the capac-
ity for growth, as is the case with plants; and third, the one which has the 
capacity for both growth and movement, as is the case with animals. These 
three are called children of three structures, and this because the four ele-
ments are called their mother. On the other hand, the sphere and the stars 
are known as their father.

Although the Greek  is not a perfect match for the Persian,40 it is clear that 
it follows it to a great extent. And in particular, one should note the strik-
ing metaphor of the four elements being the mothers of the engendered, 
while the celestial bodies  are the fathers. This is something I have not 
encountered in other hayʾa works, including those of Ṭūsī.

2. The listing and names of the constellations, as well as the number 
of stars in The Schemata of the Stars , follows almost exactly what we fĳind 

39 Paschos and Sotiroudis, The Schemata, 27.
40 It should be noted that the translation from the Greek  is problematic and needs to 

be revised based on a better understanding of the concepts being presented. Hopefully this 
will be done in a future publication.
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in the Muʿīniyya.41 For example, in both the Schemata and the Muʿīniyya, 
Ursa Major is listed as having 27 stars with 7 lying outside the constella-
tion. On the other hand, the Tadhkira simply lists Ursa Major, as well as 
the other constellations, without providing the number of stars, while in 
both Shīrāzī’s Nihāya and his al-Tuḥfa al-shāhiyya , Ursa Major has 27 stars 
with 8 lying outside.42 This is what one also fĳinds in the Almagest .43

3. The most decisive, and interesting, piece of evidence establishing 
the relation of the Schemata and the Muʿīniyya comes from the lunar 
model presented in the former. Chioniades lists 6 orbs , which difffer both 
in number and content from the Tadhkira, where Ṭūsī lists 7 orbs  for his 
non-Ptolemaic lunar model. Furthermore, the Schemata gives 13°11′/day 
for the motion of the second orb, while in the Tadhkira the equivalent 
motion, resulting from the combination of the inclined and deferent orbs , 
comes to 13°14′. On the other hand, in the Appendix (Dhayl or Ḥall ) of the 
Muʿīniyya, the lunar model given has the same 6 orbs  as in the Schemata 
and the second orb also moves at 13°11′/day.44

From these 3 examples, which could be supplemented by quite a few 
others, one may conclude that Chioniades learned theoretical astron-
omy  (ʿilm  al-hayʾa ) from the Risāla-yi Muʿīniyya  and its Appendix. What 
is remarkable about this is that when Chioniades was in Tabriz  in the 
1290s, the Persian Muʿīniyya and its Appendix, completed in 1235 and 
1245, respectively, would have long since been superseded by the Arabic 
Tadhkira, written in 1261 and containing Ṭūsī’s revisions and corrections 
to his earlier works. And any competent astronomer in Azerbaijan  in 1295 
would have known this. Why then did Chioniades’s teacher, presumably 
Shams al-Dīn al-Bukhārī , use the Muʿīniyya and its Appendix to teach 
him theoretical astronomy? One obvious reason that presents itself is 
that Chioniades was more comfortable dealing with a Persian text rather 
than an Arabic one. And Pingree has claimed that al-Zīj al-ʿAlāʾī , originally 

41  Paschos and Sotiroudis, The Schemata, 30–37; al-Ṭūsī, Risāla-yi Muʿīniyya , 19–21.
42 Ragep, Naṣīr al-Dīn, 1: 128–129; Shīrāzī, Nihāyat al-idrāk, f. 58b; Shīrāzī, al-Tuḥfa 

al-shāhiyya , Istanbul , Süleymaniye Library, Turhan Valide Sultan MS 220, f. 23b.
43 Gerald J. Toomer, Ptolemy ’s Almagest , translated and annotated by G.J. Toomer (New 

York: Springer-Verlag, 1984), 342–343.
44 Paschos and Sotiroudis, The Schemata, 42–45. For a listing of the parameters for the 

lunar model in the Tadhkira, see Ragep, Naṣīr al-Dīn, 2: 457. The sum of the lunar inclined 
and deferent orbs  comes to 13°14′ (24°23′/day –11°9′/day) in the Tadhkira; cf. the Ḥall, 
where the equivalent motion of the inclined orb is given as the mean motion of the moon  
(wasaṭ-i qamar), i.e. 13°11′ (Naṣīr al-Dīn al-Ṭūsī , Ḥall-i mushkilāt-i Muʿīniyya, facsimile of 
Tehran, Malik MS 3503 with an introduction by Muḥammad Taqī Dānish-Pazhūh [Tehran: 
Intishārāt-i Dānishgāh-i Tihrān (no. 304 in the series), 1335 H.Sh./1956–7 AD], 11).
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written in Arabic, was translated by Shams al-Dīn into Persian, presum-
ably for the benefĳit of his student, and that teaching was done in Persian.45 
The inescapable conclusion is that Chioniades felt much more comfort-
able in Persian than in Arabic;46 and this may well have reflected the 
Byzantine predilection when dealing, in whatever fĳield of endeavor, with 
their Muslim neighbors to the east. That Shams Bukharos  seems to have 
been happy to accommodate him reveals one aspect of their relationship; 
but that he felt little need to provide him with the most up-to-date astro-
nomical information is another.

IV. The Elusive Shams

It would certainly help in understanding this relationship if we knew 
more about this elusive Shams Bukharos. As recently as 6 years ago, as 
we have seen, a biography of Shams al-Dīn al-Bukhārī  stated “There is 
nothing known of him in Persian or Arabic sources . . .”47 But since then, a 
researcher in Iran 48 and our group at McGill, working independently, have 
concluded that this Shams al-Dīn al-Bukhārī  is the same individual known 
as Shams al-Dīn Muḥammad ibn ʿAlī Khwāja al-Wābkanawī  al-Munajjim, 
who is best known for a zīj entitled al-Zīj al-muḥaqqaq al-sulṭānī ʿalā uṣūl 
al-raṣad al-Īlkhānī  (The verifĳied zīj for the sultan based on the principles 
of the Īlkhānī observations), a work that, as mentioned above, was mostly 
completed during the reign of Sulṭān Öljeytü  (r. 703–716/1304–1316) but 
was dedicated to his son and successor Abū Saʿīd  (r. 716–736/1316–1335).49 
Now the village of Wābkana  (or Wābakna), the basis for his nisba, is only 
20 km from Bukhara , so two Shams al-Dīn’s from the Bukhara region work-
ing at the Mongol  court as astronomers  seems unlikely. And it was not 
uncommon to have two nisbas, one from one’s own village and another 
from the region. This Wābkanawī  is also the author of a treatise on the 
astrolabe, Kitāb-i Maʿrifat-i usṭurlāb-i shamālī  (On the northern astrolabe) 
[in Persian] that seems to be the source of the Greek  work on the astrolabe 

45 Pingree, Astronomical Works of Gregory Chioniades , 18.
46 But as we mentioned above, Leichter thinks Chioniades’s Arabic had improved by 

the time he came to translate the Sanjarī Zīj.
47 Note 5 above.
48 The researcher is S.M. Muẓafffarī, whose work I have heard of informally; I am not 

sure whether he has published or will publish his fĳindings.
49 Benno van Dalen, “Wābkanawī ,” in The Biographical Encyclopedia of Astronomers, 

eds. Thomas Hockey et al. (New York: Springer, 2007), 1187–1188.
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(mentioned above) attributed to Shams al-Dīn.50 Now if we can conclu-
sively make this identifĳication, we would also know that this Wābkanawī  
was born on 11 June 1254, based on one of the Greek  sources.51 Wābkanawī  
also provides evidence of continuity between the Marāgha  Observatory 
and astronomical research in Tabriz . One of his earliest observations dates 
from the year 684/1285; he also uses the calendar introduced during the 
reign of Ghazan  Khan and which was called the Khānī calendar.52 Since as 
we have seen Wābkanawī  himself speaks of the Marāgha Observatory  as a 
thing of the past, this would provide evidence that the observational pro-
gram in Azerbaijan  resumed shortly after the death of Maghribī in 1283, 
but now presumably in Tabriz.

There is another possible identifĳication we can make, this one a bit 
more speculative. As it turns out, al-Ḥimādhī , the author of the work 
that Shīrāzī lambasts, is also a Muḥammad b. ʿAlī al-Munajjim.53 Shīrāzī 
refrains from mentioning his honorifĳic, which, let us venture to say, might 
have been Shams al-Dīn; but given all the insults he hurls at him, it is not 
surprising that no honorifĳic is given.

If this is indeed the same Muḥammad b. ʿAlī as Muḥammad ibn ʿAlī 
al-Wābkanawī  (a.k.a. Shams Bukharos ), then it adds a bit more texture 
to our understanding of the academic infĳighting that occurred in the 
Mongol  court at this time, infĳighting that makes some of our contem-
porary scholarly battles seem quite tame in comparison. For example, 
Shīrāzī in Faʿalta became extremely upset about a claim that Ḥimādhī 
(allegedly our Shams) made regarding the Ṭūsī-couple . Ḥimādhī said that 
someone had told him that Shīrāzī’s use of the couple to show that there 
was no resting point for an object thrown straight up was anticipated by 
Plato. Shīrāzī proudly tells us that he tracked this person down, a certain 
Shams al-Dīn al-ʿUbaydī , who may also have been Shīrāzī’s student, and 
asked him point blank if that is what he had told Ḥimādhī. Kidhb! (a lie) 
was the inevitable reply from the no doubt cowering ʿUbaydī.54 Perhaps 
this might explain why Wābkanawī  tells us in al-Zīj al-sulṭānī that he had 
mostly completed it at the time of Öljeytü  (r. 1304–1316) but that it was not 
published until the reign of Abū Saʿīd  (r. 1316–1335), at which time Shīrāzī 

50 Our group is currently seeking to verify this; we have recently gained access to the 
witness preserved in the Topkapı Museum Library.

51 Pingree, Astronomical Works of Gregory Chioniades , 16.
52 Shams al-Dīn al-Wābkanawī , al-Zīj al-muḥaqqaq, Ayasofya MS 2694, fff. 2a, 2b, 3b.
53 Shīrāzī, Faʿalta fa-lā talum, f. 14b.
54 Shīrāzī, Faʿalta fa-lā talum , f. 5a–b.
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had been safely dead for several years (since 1311). And Shams/Wābkanawī  
feels safe enough in his zīj to take a swipe at the competing zīj of Shīrāzī’s 
student Niẓām al-Dīn al-Nīsābūrī , who had written what Wābkanawī  
considered an unusable commentary on Ṭūsī’s Īlkhānī Zīj  entitled Kashf-i 
ḥaqāʾiq-i Zīj-i Īlkhānī .55

It is tempting to ask at this point whether one source of the tension 
between Shīrāzī and his circle on the one hand and Shams/Wābkanawī  
on the other could have been the special treatment accorded Chioniades 
by Ghazan  Khan and Shams’s pedagogical role. This is certainly a possibil-
ity and highlighting civilizational rivalry makes a good story, especially in 
these times. But this question raises issues of east-west/Muslim-Christian 
competition, particularly in scientifĳic matters, to a level that had not been 
reached, and we are in danger thereby of reading later concerns back-
wards in time. We can say with certainty that this period of Islamic scien-
tifĳic and intellectual history, during this Mongol  interregnum, was a time 
of enormous creativity, advance and scholarly engagement and debate. 
No wonder Chioniades would be attracted to Tabriz . But the quest of a 
single scholar, and his flawed transmission of outdated texts, would not 
change the stark reality of the sizeable imbalance between Islamic and 
“western” science at the time. Chioniades had little, if anything, to offfer 
the Persians, and they in turn took little notice of his coming—at least 
there is little in evidence from the historical record. Nevertheless, he had 
begun a process, one that would eventually result in the ancient legend 
coming true: for the “Romans” would indeed overthrow the “Persians,” 
once they had consulted the practice of astronomy , whose foundation 
would fĳirst be taken from the Persians.
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Ibn al-Shāṭir and Copernicus: 
The Uppsala Notes Revisited

F. Jamil Ragep

Abstract
It has long been recognized that Copernicus’ models in the Commentariolus bear a striking 
resemblance to those of Ibn al-Shāṭir (14th-c. Damascus). A number of scholars have 
postulated some sort of transmission but have denied that Ibn al-Shāṭir’s geocentric 
models had anything to do with the heliocentric turn. Rather, the assumption has 
been that they were used by Copernicus solely to resolve the irregular motions of 
the planetary deferents brought on by Ptolemy’s equant. Based on proposals for direct 
transformations of Ibn al-Shāṭir’s models into those of Copernicus and an alternative 
reading of Copernicus’ so-called Uppsala notes, it is argued here that Ibn al-Shāṭir’s 
models in fact have a “heliocentric bias” that made them particularly suitable as a basis 
for the heliocentric and “quasi-homocentric” models found in the Commentariolus.

Keywords
Ibn al-Shāṭir, Copernicus, Commentariolus, De revolutionibus, Islamic astronomy, 
heliocentrism, Averroism, Renaissance astronomy, homocentric astronomy

Introduction

In his classic translation of and commentary on Copernicus’ Commentariolus,1 Noel 
Swerdlow provided a plausible and coherent reconstruction of Copernicus’ pathway 
from Ptolemaic, geocentric planetary models to Copernican, heliocentric ones.2 
Swerdlow hypothesized a conversion of Ptolemy’s epicyclic models for the planets into 
eccentric models, based on propositions found in Regiomontanus’ Epitome of the 
Almagest.3 This, he claimed, was the crucial step in the transformation from geocentric 
to heliocentric models. This reconstruction was mainly based on an interpretation of the 
so-called Uppsala notes [U] in Copernicus’ hand and the curious use of the word eccen-
tricitas found therein. As Swerdlow put it,
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The use of the word eccentricitas in U for the sine of the maximum equation of the anomaly 
shows that Copernicus was investigating the eccentric model of the second anomaly. My entire 
analysis hangs on this one word.4

In his discussion, Swerdlow bifurcated Copernicus’ handling of the “first” and “sec-
ond” anomalies, the former having to do with the tropical or sidereal motion, the latter 
with the synodic. Thus, the irregular motions arising from Ptolemy’s equant (falling 
under the “first anomaly”) were, in this view, unrelated to the critical transformations of 
the second anomaly that led to the eccentric models and whence to heliocentrism.5 In 
what follows, I argue that there is an alternative, and simpler, way to reach Copernicus’ 
models in the Commentariolus without assuming the intermediate step of eccentric mod-
els nor the presumed, bifurcated process. This depends on assuming that (1) when 
Copernicus uses the word eccentricitas, he is not referring to “eccentric models” (as 
found in Regiomontanus) but rather the amount the Earth is out of center (“eccentric”) to 
the Sun, i.e., the Earth–Sun distance, and (2) Copernicus does not bifurcate the process 
of the geocentric-heliocentric transformation by dealing with the first and second anoma-
lies separately but rather exploits the peculiar nature of Ibn al-Shāṭir’s “heliocentrically 
biased” models that allows for a more direct transformation.

Relation of Ibn al-Shāṭir’s models to the Commentariolus 
models

Ibn al-Shāṭir (1306–1375/6 c.e.), who was a timekeeper at the Umayyad Mosque in 
Damascus, dispensed with eccentrics in his Nihāyat al-suʾl and, more importantly, made 
the Earth the center of mean motion of his planetary models. This has been known for 
some time, since the modern examination by E.-S. Kennedy of the Nihāyat al-suʾl and 
the subsequent articles by Kennedy and his students at the American University of Beirut 
in the 1950s and 1960s.6 It is almost impossible to discuss Ibn al-Shāṭir’s models without 
mentioning the further discovery, made by Otto Neugebauer, that Ibn al-Shāṭir’s models 
bore significant similarities with those of Copernicus in the Commentariolus.7 These 
discoveries were used with great effect by Swerdlow and later Swerdlow/Neugebauer 
when analyzing Copernicus’ planetary models.8

Among the underappreciated aspects of Ibn al-Shāṭir’s models are, somewhat para-
doxically, their Aristotelian and heliocentric biases. By Aristotelian, I mean their “quasi-
homocentricity,” whereby all the planetary models have their major deferent orb (the 
“inclined orb” (falak māʾil)) centered and moving uniformly about the Earth; further-
more, as noted, he removed all eccentrics from his system and depended on epicycles to 
replicate Ptolemy’s eccentricities.9 The “heliocentric bias” is a consequence of this, since 
it allows a relatively straightforward and direct transformation from Ibn al-Shāṭir’s to 
Copernicus’ Commentariolus models.10 This represents a radical departure from previ-
ous systems, both Ptolemaic and non-Ptolemaic, as we can see from the following illus-
tration comparing several models (Figure 1).

α  is the mean motion for each of the models; each of the lines extending from O, D, 
H, and E represents the main deferent orb for each model. C is Ptolemy’s epicycle center, 
which is approximately, but not exactly, the location of the epicycle center in the other 
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models; e is the eccentricity. Note that although Ptolemy’s mean motion is about the 
equant point, his main deferent is centered at D, not E. It is this “centering on the Earth” 
by Ibn al-Shāṭir, I am arguing, that is critical for the transformation to a heliocentric sys-
tem, at least insofar as Copernicus presents it in the Commentariolus.

Let us first consider Ibn al-Shāṭir’s model for the outer planets (Figure 2).12

The Earth O is at the center of a concentric orb with radius OF, rotating counterclock-
wise13 with the mean motion α . F is then the center of a “large” epicycle FG, rotating 
clockwise with the mean motion α , and G is the center of a “small” epicycle GC, rotating 
counterclockwise with twice the mean motion. C is the center of the Ptolemaic epicycle 
CP, P being the planet. The two epicycles FG and GC, called by Ibn al-Shāṭir the deferent 
(al-hāmil) and dirigent (al-mudīr), respectively, rotate uniformly and serve to account for 
Ptolemy’s “first anomaly,” brought about by his eccentricities and equant E (the point 
about which equal “mean” motion occurs in Ptolemy’s models). Ibn al-Shāṭir thereby 
eliminates the irregular motion of Ptolemy’s deferent that moves with respect to the 
equant rather than its own center (see Figure 1). As with Ptolemy’s model, the line joining 
the planet P with the center of the epicycle is coordinated with the motion γ  of the mean 
Sun 

–
, so that CP is always parallel to the direction of the mean Sun from the Earth.14

There are three steps in the proposed transformation to the models of the outer planets 
in the Commentariolus (Figure 3). The first step is to transpose the Ptolemaic epicycle so 
that its center C is now at C′, which coincides with the center of the World O.

Figure 1. Several models schematically compared.11
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The second step is to move O and 
–
 along line 

– 
O, O to O′ on the circumference of 

the transposed epicycle, and 
– 

 to 
–
 ′  at the center of the World. Finally, P is moved paral-

lel to 
– 

O to P′, coinciding with the Ptolemaic epicycle center C. 
–
 ′F has become the 

radius of the new “deferent orb” of the planet, which Copernicus refers to as the “semi-
dyameter orbis.” Figure 4 represents the Commentariolus model.15

From an astronomical standpoint, this transformation is not that difficult to conceive, 
since, as mentioned, the motion of Ptolemy’s epicycle is essentially equal to the motion 

of the Sun around the Earth. Mathematically, we note that OF FG GC CP
u ruu u ruu u ruu u ruu

+ + +  (Figure 
2) =  ′ + + ′ ′ + ′ ′O F F G G P

u ruuuu u ruu u ruuu u ruuu

– 

′
– 

′  (Figure 4). The point to keep in mind is that such a simple 
transformation is possible because Ibn al-Shāṭir has placed the Earth at the center of the 
main deferent OF and dealt with the first anomaly not using eccentrics centered on the 
apsidal line but rather with the double epicycles external to the apsidal line. In the other 
models shown in Figure 1, such a direct transformation would not be possible, since one 
must first transform deferents centered at H and E (for ʿUrḍī and Ṭūsī, respectively) to 
ones centered on the Earth in order to reach the Commentariolus models; in other words, 
one would need to transform these models into Ibn al-Shāṭir’s mathematically equivalent 
models. For Ptolemy, the situation is even more complicated, since Copernicus would, in 
addition to everything else, have had to deal with the irregular motion brought on by the 
equant and then somehow resolve that problem and come up with Ibn al-Shāṭir’s models. 
In any event, at some point, Copernicus borrowed or came up with Ibn al-Shāṭir’s mod-
els, since that is what is implied, as we shall see, by the Uppsala notes.

Figure 2. Ibn al-Shāṭir’s model for the outer planets.

398



179Ibn al-Shāṭir and Copernicus: The Uppsala Notes Revisited
 

Figure 4. Commentariolus model for the outer planets.

Figure 3. Transformation of Ibn al-Shāṭir’s models for the outer planets into the 
Commentariolus models.
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The advantage of having Ibn al-Shāṭir’s models in the transformation to a heliocentric 
system becomes even clearer when we examine the inner planets. Because Mercury’s 
model is more complex, let us take Venus as our example, since the basic points related 
to its transformation are equally applicable to Mercury. Ibn al-Shāṭir’s version is shown 
in Figure 5.

As can be seen, this model is essentially the same as that for the outer planets; the 
major difference is that for Venus (and Mercury), the mean Sun is in the direction OF 
rather than CP as it was for the outer planets. For the inner planets, the transformation to 
a heliocentric model is even simpler than for the outer planets; all we need to do is move 

– 

 to F and have the Earth O revolve at a fixed distance around a stationary mean Sun, 
keeping the radii of the other orbs/vectors in the same relative positions. We then have 
the model in De revolutionibus (Figure 6).

This type of simple transformation to the De rev model is not possible for Mercury 
and Venus using the other models depicted in Figure 1. Referring to Figure 7, we note 
that the mean Sun is on a line from the equant through the epicycle center for the inner 
planets, since their mean motion is equal to that of the mean Sun and is with respect to 
the equant point. Moving the mean Sun to the deferent (i.e., the endpoint of the first 
vector, which for Ptolemy and Ṭūsī would be to the epicycle center C and for ʿUrḍī the 
point K) would then require a correction to the mean motion to achieve the line of sight 
from the Earth to the mean Sun (OC or OK). But for Ibn al-Shāṭir’s models, there is no 
correction since the mean motion is with respect to the Earth, so the mean Sun, as we 
have seen, is on the line OF defined by the mean motion, making the above simple 
transformation possible.

Figure 5. Ibn al-Shāṭir’s Venus model.
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Figure 6. Copernicus’ Venus model in De revolutionibus.16

Figure 7. Comparison of Venus models with respect to the mean Sun.

401



182   Islamic Astronomy and Copernicus
 

It would be nice if we could end the story here, but Copernicus’ Commentariolus 
models for the inner planets are not the same as those in De rev. The main difference is 
that in the De rev models, the mean Sun and the center of the planet’s orbit (C) are dif-
ferent, whereas they are the same in the Commentariolus. Consequently, the transforma-
tion from Ibn al-Shātīr’s models, while still possible, is more complex as we see in 
Figure 8.

As with the outer planets, the planetary epicycle with center C is moved so it is now 
about center O. The mean Sun is also moved to the center, while the Earth is moved 
along the same line to the circumference of the former deferent OF so it is now at O′. One 
is left with the problem of where to place the bi-epicyclic device. Since CP is a radius of 
the epicycle, which is now the main deferent of the planet in the heliocentric model, 
Copernicus could have reasoned as follows. Move CP, renaming it C*P*, and maintain-
ing size and direction, so that P* coincides with F. Now move C*F, FG, GC, again main-
taining size and direction, so that C* coincides with 

– 
′. By simple geometry, one can 

find that O′ moves with a mean motion of α  in the counterclockwise direction; the mean 
motion of point F′ is α γ+  in the counterclockwise direction; epicycle F′ rotates α γ+  
clockwise and epicycle G′ moves 2α  counterclockwise. Using vectors, we note that 

OF FG GC CP
u ruu u ruu u ruu u ruu

+ + +  (Figure 5) = ′ + + ′ ′ + ′ ′O F F G G P
u ruuuu u ruu u ruuu u ruuu


– 

′  ′
– 

′  (Figure 8). A similar trans-
formation is used for Mercury, but here one needs to add a Ṭūsī-couple, just as in Ibn 
al-Shāṭir’s model, in order to vary the size of the planetary deferent/orbit.17

Admittedly, these complicated transformations for Mercury and Venus raise numer-
ous questions. If Copernicus had Ibn al-Shāṭir’s models when composing the 
Commentariolus, why didn’t he make the simple transformation that he later did in De 
revolutionibus? This question becomes particularly acute when we realize that the 

Figure 8. Transformation of Ibn al-Shāṭir’s model for Venus into the Commentariolus model.
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Commentariolus models for Mercury and Venus are quite difficult to use for computa-
tions as a result of the peculiar arrangement of the orbs resulting from this transforma-
tion; in fact, the equation of center can no longer be calculated from the Earth, and the 
calculation of elongations becomes quite difficult (and perhaps even impossible as far as 
Copernicus and his contemporaries are concerned).18 On the other hand, as we have seen, 
it is indeed possible, with a bit of ingenuity, to transform Ibn al-Shāṭir’s models for the 
inner planets into those in the Commentariolus without resorting to the intermediation of 
Regiomontanus’ eccentric alternative. My argument is that when writing the 
Commentariolus, one of Copernicus’ priorities was to have models whose main defer-
ents/orbits were centered on the mean Sun even if this made the models less practical for 
calculation. This is not the case with the De rev models, where Copernicus introduced 
eccentric orbs for his planetary deferents.19 I will speculate below about the reasons for 
this insistence in the Commentariolus on “homocentric” deferents.

The Uppsala notes

In addition to the fact that one can, as above, make a fairly straightforward transforma-
tion of Ibn al-Shāṭir’s models to those in the Commentariolus, one can also interpret the 
Uppsala notes as providing evidence that Copernicus transformed Ibn al-Shāṭir’s models 
without an eccentric intermediary. The first thing to note is that the parameters for Ibn 
al-Shāṭir’s models are provided as a set in U; in other words, there is no indication that 
there are separate transformations for the first and second anomalies. Let us take the 
specific example of Mars using Ibn al-Shāṭir’s values for radii OF and CP, namely, the 60 
parts of the Ptolemaic deferent (which Ibn al-Shāṭir calls the “inclined orb”) and the 39½ 
parts for Mars’ epicycle. If we norm 60 to 1, then the 39½ becomes .6583. Norming the 
1 to 10,000 results in 6583, which is precisely what one finds in the Uppsala notes with 
the label Eccentricitas Martis. As we have seen, Swerdlow takes this to be “the sine of 
the maximum equation of the anomaly,” which it is, but then he makes the further 
assumption that eccentricitas has to do with the eccentric model of the second anomaly, 
which I question. A simpler explanation is to understand eccentricitas literally, and con-
sistently, as the distance of the Earth from the new center, i.e., the mean Sun (Figure 4).20 
This would be the new “off-centeredness” in this transformation of Ibn al-Shāṭir’s model.

There is additional evidence in support of this interpretation. In the Uppsala notes, 
after giving the eccentricities for Mars, Jupiter, Saturn, and Mercury, Copernicus writes, 
“proportio orbium celestium ad eccentricitatem 25 partium” (the proportion of the celes-
tial orb to an eccentricity of 25 parts). Now what exactly does he mean by eccentricity 
here? If one interprets this to be the same eccentricity (but with a different norm) as in 
the earlier part of the notes, then all he is saying is let us find the “proportion” or amount 
of the celestial orb (i.e., 

– 
′F in Figure 4) if we assign an eccentricity (i.e., an “off- 

centered-ness” of the Earth) to be 25 rather than, say, 6583 for Mars.21 And indeed this is 
exactly what happens in the next line, where 

– 
′F the “semidyameter orbis” is given as 

38, which results from the following proportion: 6583/25 = 10,000/x ⇒ x = 37.98 ≈ 38.
The situation of the inner planets is a bit different and less straightforward. Taking 

Mercury, since Copernicus does not list Venus in the upper part of U,22 we find that 
Copernicus gives the ecce[ntricitas] as 2256 (or less likely 2259). But this number is 
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underlined, and in the margin, there is the number 376. Now if Copernicus were to use 
the same method as with the outer planets, Mercury’s epicycle radius of 22.56, divided 
by 60, would give an eccentricitas of .376, which would be 376 normed to 1000.23 
However, neither 2256 nor 376 is the eccentricitas if we interpret it as being the Earth–
Sun distance. For in order to arrive at the radius of Mercury’s “orbis” 

– 
′F′ (i.e., 9;24) in 

the lower part of the Uppsala notes, we must reduce the 1000 (corresponding to OF = 60 
in Ibn al-Shāṭir’s model, 

– 
′O′ in the Commentariolus model) to 25: 1000/25 = 376/x ⇒ x 

= 9;24 = 
– 

′F′. Thus, the eccentricitas for Mercury, which is the distance between the 
mean Sun and Earth before that value is normed to 25, is actually 1000, which is implied 
by the 376 in the margin. Thus, whether one interprets 2256 as the epicycle radius or as 
the eccentricity in the eccentric model of the second anomaly, in order to arrive at an 
“orbis” of 9;24 in the lower part of U, one needs to use 1000 as the “eccentricity” implied 
by “proportio orbium celestium ad eccentricitatem 25 partium.” It is interesting that 
Copernicus chose not to provide an eccentricitas for Venus, perhaps because of the con-
fusion regarding exactly what was the eccentricitas.

Table 1 provides derivations of all the non-crossed-out numbers in U (excluding the 
Moon), assuming only that Copernicus had at his disposal Ibn al-Shāṭir’s models in some 
form and that eccentricitas refers to the Earth–Sun distance resulting from the above 
transformations of Ibn al-Shāṭir’s models. As mentioned (see Note 23), Copernicus’ 
parameters are from, or derived from, the Alphonsine tables, and, unlike Ibn al-Shāṭir 
and later in De rev, he maintains a strict 3:1 relationship between r1 (the radius of first 
epicycle) and r2 (the radius of second epicycle) for all the planets.

In discussions of the possible influence of Ibn al-Shāṭir on Copernicus, one important 
counterargument is that their parameters are different. Swerdlow has shown that most of 
the parameters in U are either directly or indirectly from the Alphonsine Tables; indeed, 
the “eccentricities” are the sines of the maximum equation of the second anomaly from 
those tables.26 This means that not only are the parameters different from those of Ibn 
al-Shāṭir, it is also clear that they are not taken directly from the Almagest. More tell-
ingly, Copernicus adheres to a 3:1 ratio for the bi-epicyclic device for all the planets, 
whereas Ibn al-Shāṭir does so only for the outer planets.27 Among other things, this 
results in an exceedingly bad value for Mercury’s maximum equation of center.28

But then how do we account for the remarkable similarity between Ibn al-Shāṭir’s 
models and those in the Commentariolus? One possibility is that Copernicus does not 
have the text of Nihāyat al-suʾl, or has the text and can’t read it, but does have the dia-
grams. In support of this, let us look a bit more closely at the Mercury model and some 
of its parameters in U.

Copernicus’ Mercury model has been a challenge to researchers, inasmuch as he talks 
rather cryptically about the orbit being smaller when the Earth is at 0° and 180°, while it 
is larger when the Earth is at quadratures.29 Let us examine Ibn al-Shāṭir’s diagram for 
Mercury (Figure 9), which evidently illustrates Copernicus’ meaning.

As can be seen, Ibn al-Shāṭir shows the effect of the Ṭūsī-couple (the two, small inter-
secting circles in one of which Mercury is embedded) by indicating a “True Epicycle 
Orb” and an “Apparent Epicycle Orb,” the latter resulting from the couple moving the 
planet in a straight line toward and away from the center. At 0° and 180°, the apparent 
epicycle becomes smaller (Mercury “traversing a far smaller circumference” according 
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to Copernicus), while at 90° and 270°, it becomes larger (“traversing a far larger circum-
ference”).31 This would seem to indicate that Copernicus is following the illustration in 
Nihāyat al-suʾl.

Turning to Mercury’s parameters, in the upper part of U, Copernicus writes 6 or 600 
for r1 + r2 for Mercury. However, the “ecce” of 2256 (or 376) in conjunction with the 
115.1 (or 19) for the diversitas diametrj, the displacement resulting from the Ṭūsī couple, 
implies r1 + r2 = 576.32 But Copernicus uses 540 to derive the values in the lower part of 
U, i.e., r1 = 1;41¼ and r2 = 0;33¾ (see Note 24). Where does this 540 come from? Looking 
again at Figure 9, we can conjecture that Copernicus reasoned (incorrectly) as follows: 
the largest size of the epicycle (“Apparent Epicycle Orb”) is 2256 + 115.1 = 2371.1 at 
90°. Its smallest size (“Apparent Epicycle Orb”) is 2256 − 115.1 = 2140.9 at 0°. But rather 
than taking the radius of the “True Epicycle Orb,” i.e., 2256 (or 376), he adopted the 
“Apparent Epicycle Orb” at α = °0  as his reference epicycle, since it is the starting 
point. If we take the maximum equation to occur at 90°, then the Ptolemaic eccentricity 
of 6 (or 600) should be measured there with the epicycle being 2371.1. But at α = °0 , 
the ratio of the two “apparent” epicycles is 2140.9/2371.1 ≈ .9. So the sum of the eccen-
tricities (r1 + r2) should be proportionally lowered, at least according to this reasoning, 
i.e., .9 × 600 = 540.33 Along with Copernicus’ description of a varying planetary “circum-
ference” (epicycle in Ibn al-Shāṭir’s model) and the explanation for 540 arising from the 
diagram, I would argue that Copernicus had at his disposal something like Figure 9. In 
which case, he had Ibn al-Shāṭir’s model when composing the Commentariolus. Why 
then he didn’t make the simple transformation of Mercury (as well as Venus) to the De 
rev model is taken up in the concluding section.

Figure 9. Ibn al-Shāṭir’s schematic depiction of his Mercury model.30
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Concluding remarks

Thanks to the recent work of Tzvi Langermann and Robert Morrison, we now know 
that a certain Jewish scholar named Moses Galeano brought knowledge of Ibn 
al-Shāṭir’s models to the Veneto (and environs such as Padua?) at the time Copernicus 
was studying in Italy.34 And from the earlier discoveries and research of E.S. Kennedy 
and his students as well as Otto Neugebauer and Noel Swerdlow, the remarkable simi-
larities between the models of Ibn al-Shāṭir (and other Islamic astronomers) with those 
of Copernicus have been brought to light. Although there are still skeptics who believe 
Copernicus could have come up with his models without this cross-cultural influence, 
I will assume here, without further detailed proof, that Ibn al-Shāṭir’s models were 
available in some form to Copernicus.35

As noted at the beginning of this paper, Swerdlow has sought to treat the reform of 
the first anomaly independently of the heliocentric transformation; many (if not most) 
other scholars, including Neugebauer, Kennedy, and Goldstein, have agreed with this 
approach.36 André Goddu, however, has recently focused on the views of two scholars 
who sought to link Copernicus’ turn to heliocentrism with his stated objective to rid 
astronomy of the irregular motion of celestial orbs such as that brought on by the 
equant37 – or to put it another way, to link the transformation of the second anomaly 
with the “Marāgha-type” reforms of the first anomaly. The two scholars, Ludwik 
Antoni Birkenmajer (1855–1929) and Curtis Wilson (1921–2012), proposed some-
what similar views on how the bi-epicyclic device somehow laid bare the possibility 
for Wilson, the necessity for Birkenmajer, to replace Ptolemy’s large, unbecoming 
epicycles for the outer planets with the Earth’s orbit around the Sun as shown in Figure 
4 above. In some ways, this is similar to what is being proposed here, namely, the 
“heliocentric bias” of the bi-epicyclic solution to the equant problem that allows a 
simple, straightforward transformation to heliocentric models. Where I would differ 
with Birkenmajer and Wilson (and perhaps Goddu) is that they have not provided plau-
sible pathways to the bi-epicyclic models of the Commentariolus, either in their pre-
sumed earlier geocentric or final heliocentric forms. Birkenmajer and Goddu invoke 
Albert of Brudzewo, the Cracow University schoolman who criticized Peurbach’s 
unthinking acceptance of the equant and also proposed a model to deal with the irregu-
lar motion brought on by Ptolemy’s lunar prosneusis point, as an important, perhaps 
critical, influence on Copernicus.38 But these are slim pickings; it is a long way from 
simply stating the equant problem or proposing a vague model for epicyclic oscillation 
to Copernicus’ Commentariolus models.39

There is another way that I would differ from Birkenmajer and Wilson as presented 
by Goddu. Their primary emphasis for Copernicus’ path to heliocentrism is on the outer 
planets; in fact, Wilson states that his figure for the superior planets “cannot be easily 
adapted to the case of the inferior planets,” which is true.40 On the other hand, I am 
impressed with the utter simplicity of the transformation of Ibn al-Shāṭir’s Venus model 
and, especially, his complex model for Mercury into the models in De revolutionibus 
(Figure 6).41 More than the outer planets, this seems to show the “heliocentric bias” in its 
most obvious form, and I think Ibn al-Shāṭir’s models for the inner planets may have 
been influential in convincing Copernicus of the possibility of heliocentric models. But 

407



188   Islamic Astronomy and Copernicus
 

this does bring up the fact, already mentioned above, that such a simple transformation 
of the inner planets is not what we have in the Commentariolus (Figure 8). Given my 
commitment to transmission, I would offer the following, tentative scenario. Copernicus, 
for reasons to be outlined below, was attempting to find some form of a homocentric 
cosmology that resolved the problem of Ptolemy’s violations of uniform circular motion, 
in particular those brought about by the equants. Ibn al-Shāṭir’s models offered a com-
promise, in that they dispensed with eccentrics and all his major deferents were centered 
on the Earth. The bi-epicyclic device was an uncomfortable but tolerable necessity. But 
that left the Ptolemaic epicycles, which could be dispensed with by adopting heliocen-
trism. Admittedly, the latter required a bold leap, but here I think Birkenmajer and Wilson 
have glimpsed an important part of Copernicus’ thinking and motivation. I would just 
add that this still leaves open the possibility that Copernicus could have also been ini-
tially motivated by other factors toward heliocentrism, say Ibn al-Shāṭir’s models for the 
inner planets (my preference) or some other, non-mathematical reason.42

Let me expand on the argument regarding homocentrism. As is well known, the 
homocentric cosmology of the Andalusian Nūr al-Dīn al-Biṭrūjī (fl. ca. 1190) was read 
and commented on in Europe from the time it became available in Latin translation in the 
early thirteenth century. Coupled with the views of Averroes (1126–1198), another 
Andalusian who had also advocated a return to Aristotelian homocentric orbs, one can 
detect a growing interest in homocentric astronomy in fifteenth- and sixteenth-century 
Europe, as well as Averroism.43 Copernicus himself brings up Calippus and Eudoxus in 
his introduction to the Commentariolus, and as Swerdlow states, “What is of interest to 
note about Copernicus’s remark is that he objects to the result, but not to the principle of 
homocentric spheres.”44 Now there has been a tendency among both historians of Islamic 
science and of astronomy to lump all the eastern Islamic, non-Ptolemaic models under 
the rubric of the “Marāgha School” and to contrast them with the homocentric proposals 
that came out of twelfth-century Andalusia.45 In this scenario, the main issue motivating 
the former was resolving the irregularities of the equant and its siblings, while the 
Andalusians were driven by “philosophical” concerns and a desire to return to a pure 
Aristotelianism. But there is something fundamentally different about Ibn al-Shāṭir’s 
models. They are actually centered on the Earth both mathematically and cosmologi-
cally, and they dispense with eccentrics. In a way that likely would have appealed to the 
Averroists in Bologna and Padua, where Copernicus studied, Ibn al-Shāṭir’s models both 
resolve a number of irregularities of Ptolemaic astronomy and at the same time, unlike 
those of other members of the so-called “Marāgha School,” bring the Earth back into the 
center of the universe.46 Although he is certainly not a homocentrist along the lines of 
al-Biṭrūjī, he was able to achieve a successful “quasi-homocentric” system, whereas the 
Andalusian Aristotelians and their followers could only tilt at windmills.

If we accept that Copernicus was, at the time of writing the Commentariolus, a “quasi-
homocentrist” along the lines of Ibn al-Shāṭir, then we can explain the puzzling models 
for the inner planets. Eschewing their simple transformations that would have led to De 
rev-type models with their eccentrics, he instead chose to make the centers of their main 
deferents coincide with the mean Sun, i.e., the center of the Earth’s orb. However, this 
created numerous problems, not the least of which was making them difficult if not unus-
able for calculation. But in the following 30 or so years, the “homocentrism” of the 
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Commentariolus would give way to the extensive use of eccentrics in De revolutionibus. 
Clearly, there could be no other choice if he were to be taken seriously as a competent 
mathematical astronomer, someone whose work could rival that of the Almagest.

I have attempted to show that there is a relatively straightforward way to go from Ibn 
al-Shāṭir’s planetary longitude models to those in the Commentariolus without needing 
to treat the first and second anomalies independently. In particular, there would have 
been no need for recourse to Regiomontanus’ propositions and the intermediation of 
eccentric models.47 I have also tried to present a compelling case that Ibn al-Shāṭir’s 
models had a “heliocentric bias” that may have influenced Copernicus’ turn to heliocen-
trism. What I have not shown, nor was it my intent, is that Ibn al-Shāṭir saw the heliocen-
tric potential of his models or had any inclination in that direction. There is just no 
evidence I know of to support this. Furthermore, just because Ibn al-Shāṭir’s models lend 
themselves in a certain direction doesn’t mean that anyone had to be a borrower. After 
all, the fact that the Sun’s motion about the Earth was connected in some way with each 
of the planets was hardly news; Ptolemy had already stated as much in the Almagest, and 
one finds this repeated throughout both the Islamic and Latin middle ages.48 Here, I 
would speculate that Ibn al-Shāṭir’s models, however “biased” they might be, would 
only influence someone toward heliocentrism who was already inclined in that direction. 
Ibn al-Shāṭir’s models, when all is said and done, are geocentric, and they work remark-
ably well. Why mess with something that wasn’t broken unless, of course, one was 
already disposed toward a new cosmology, which brings us to the recurring question of 
not “how” Copernicus developed his models but “why.” And to that there are no lack of 
answers, to which I shall refrain from adding another.
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Notes

 1. N.M. Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory: A Translation 
of the Commentariolus with Commentary,” Proceedings of the American Philosophical 
Society, 117(6), 1973, pp. 423–512, <https://www.jstor.org/stable/986461?seq=1#page_
scan_tab_contents>. A facsimile of the Uppsala notes and Swerdlow’s transcription, referred 
to throughout this paper, are on pp. 428–9.
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 2. As is well-known, heliocentric in this context means “centered on the mean Sun,” not the “true 
Sun.”

 3. Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 
1), pp. 471–8. See also N.M. Swerdlow and O. Neugebauer, Mathematical Astronomy in 
Copernicus’s De Revolutionibus, 2 parts (New York: Springer-Verlag, 1984), part 1, pp. 54–
64, esp. 55–8. Dennis Duke provides animations showing this transformation from Ptolemaic 
epicyclic models to eccentric models to Copernican models at <https://people.sc.fsu.
edu/~dduke/models> (25 September 2016). For the treatise by ʿAlī Qushjī that may well have 
provided the basis for Regiomontanus’ propositions, see F. Jamil Ragep, “ʿAlī Qushjī and 
Regiomontanus: Eccentric Transformations and Copernican Revolutions,” Journal for the 
History of Astronomy, 36(4), 2005, pp. 359–71.

 4. Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 1), p. 478.
 5.

This [introduction in the Commentariolus of the heliocentric theory] really has nothing to 
do with the principle of uniform circular motion that started Copernicus’s investigations in 
the first place, but it seems likely that in the course of the intensive study of planetary theory 
undertaken to solve the problem of the first anomaly, he carried out an analysis of the second 
anomaly leading to his remarkable discovery.

(Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 
1), p. 425). See also Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary 
Theory,” p. 430: “… the Maragha theory is, in any case, relevant only to the first anomaly, 
not to the heliocentric theory.”

 6. For the purposes of this paper, the most important is E.S. Kennedy and V. Roberts, “The 
Planetary Theory of Ibn al-Shāṭir,” Isis, 50(3), 1959, pp. 227–35, reprinted E.S. Kennedy, 
“Colleagues and Former Students,” in D.A. King and M.H. Kennedy (eds), Studies in the 
Islamic Exact Sciences (Beirut: American University of Beirut, 1983), pp. 55–63.

 7. V. Roberts, “The Solar and Lunar Theory of Ibn Ash-Shāṭir: A Pre-Copernican Copernican 
Model,” Isis, 48(4), 1957, pp. 428–32, n. 2 on p. 428.

 8. Although neither Swerdlow nor Neugebauer thought there was a connection between 
Copernicus’ heliocentrism and his Islamic predecessors, it should be noted that both con-
sistently maintained the importance of Islamic astronomy, and in particular Ibn al-Shāṭir’s 
models, for Copernicus:

The planetary models for longitude in the Commentariolus are all based upon the models of 
Ibn ash-Shāṭir – although the arrangement for the inferior planets is incorrect – while those for 
the superior planets in De revolutionibus use the same arrangement as ʿUrdi’s and Shīrāzī’s 
model, and for the inferior planets the smaller epicycle is converted into an equivalent rotat-
ing eccentricity that constitutes a correct adaptation of Ibn ash-Shāṭir’s model. In both the 
Commentariolus and De revolutionibus the lunar model is identical to Ibn ash-Shāṭir’s and 
finally in both works Copernicus makes it clear that he was addressing the same physical 
problems of Ptolemy’s models as his predecessors. It is obvious that with regard to these 
problems, his solutions were the same.

The question therefore is not whether, but when, where, and in what form he learned of 
Marāgha theory. (Swerdlow and Neugebauer, Mathematical Astronomy in Copernicus’s De 
Revolutionibus (see Note 3), part 1, p. 47)

 9. George Saliba has perceptively discussed the reasons for Ibn al-Shāṭir’s dismissal of eccen-
trics and justification of epicycles in several of his writings; see G. Saliba, “Critiques of 
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Ptolemaic Astronomy in Islamic Spain,” Al-Qantara: revista de estudios arabes, 20(1), 
1999, pp. 3–25, on pp. 15–17; G. Saliba, Islamic Science and the Making of the European 
Renaissance (Cambridge: MIT Press, 2007), pp. 162–3.

10. Saliba has already pointed to this in Saliba, Islamic Science and the Making of the European 
Renaissance (see Note 9), p. 164:

One additional advantage [of Ibn al-Shāṭir’s models] resulted from this systematic use of 
geocentricity, which was to come in handy later on during the European Renaissance: the 
unification of all the Ptolemaic geocentric models under one structure that lent itself to the 
simple shift of the centrality of the universe from the Earth to the sun, thus producing helio-
centrism, without having to make any changes in the rest of the models that accounted well 
for the Ptolemaic observations resulting from the equant.

See also Saliba, Islamic Science and the Making of the European Renaissance, pp. 193–4, 
where Saliba notes their “strict Aristotelian cosmological requirements of abolishing eccen-
trics,” and “the unintended consequences of the unified models [that] produced the ‘strange’ 
development that allowed them to be transferred into heliocentric models …”

11. Adapted from E.S. Kennedy, “Late Medieval Planetary Theory,” Isis, 57(3), 1966, pp. 365–
78, Figure 1 on p. 367.

12. Cf. Kennedy and Roberts, “The Planetary Theory of Ibn al-Shāṭir” (see Note 6), p. 229, 
reprinted p. 57 and Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary 
Theory” (see Note 1), p. 468. See also G. Saliba, “Arabic Astronomy and Copernicus,” 
Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaften, 1, 1984, pp. 73–87, on 
pp. 81–4, reprinted in G. Saliba, A History of Arabic Astronomy: Planetary Theories during 
the Golden Age of Islam (New York: New York University Press, 1994), pp. 291–305, on pp. 
299–302.

13. Counterclockwise is in the positive (sequential) direction of the zodiacal signs; clockwise is 
in the negative (counter-sequential) direction.

14. For simplicity, γ is being measured in Figure 2 from the epicyclic perigee rather than the 
“true” apex, which is the point from which the motion of the epicycle would normally be 
measured. Thus, for both Ptolemy and Ibn al-Shāṭir, the depicted position of the planet on the 
epicycle would be 180° + γ.

15. For an elaborated version, see Swerdlow, “The Derivation and First Draft of Copernicus’s 
Planetary Theory” (see Note 1), Figure 26, p. 481. Note that Curtis Wilson also suggested 
a similar transformation; however, since he does not take into account the possibility of 
Copernicus having Ibn al-Shāṭir’s models, his transformation required the additional steps 
of first coming up with the bi-epicyclic device to deal with the first anomaly. See C. Wilson, 
“Rheticus, Ravetz, and the ‘Necessity’ of Copernicus’ Innovation,” in R.S. Westman (ed.), 
The Copernican Achievement (Berkeley: University of California Press, 1975), pp. 17–39, 
esp. Figure 5, p. 35. Wilson’s analysis has recently been re-examined by A. Goddu in his 
“Ludwik Antoni Birkenmajer and Curtis Wilson on the Origin of Nicholas Copernicus’s 
Heliocentrism,” Isis, 107(2), 2016, pp. 225–53. I thank an anonymous reviewer for bringing 
these references to my attention.

16. Cf. Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 
1), Figure 34, p. 492.

17. For details on Mercury, see Swerdlow, “The Derivation and First Draft of Copernicus’s 
Planetary Theory” (see Note 1), pp. 499–509; the model is illustrated in Figure 39, p. 501. 
See also S. Nikfahm-Khubravan and F.J. Ragep, “Ibn al-Shāṭir and Copernicus on Mercury” 
(in press).
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18. Swerdlow and Neugebauer, Mathematical Astronomy in Copernicus’s De Revolutionibus (see 
Note 3), part 1, pp. 62, 372–3, where the claim is made that “the difficulty was probably 
due to Copernicus’s originally using the eccentric model for the second anomaly.” In what 
follows, I provide an alternative explanation for the peculiarities of these models. See also 
Nikfahm-Khubravan and Ragep, “Ibn al-Shāṭir and Copernicus on Mercury” (see Note 17).

19. See Swerdlow and Neugebauer, Mathematical Astronomy in Copernicus’s De Revolutionibus 
(see Note 3), part 1, pp. 299–300, 356 ff., 384 ff., where they discuss why Copernicus may 
have decided to introduce eccentrics in his De rev models.

20. Swerdlow recognizes this possible interpretation of eccentricitas:

In holding the eccentricity constant, Copernicus has, of course, done something of enormous 
importance, for although he did not mention it in U, we know that he also assumed the eccen-
tricity to be the distance between the earth and the mean sun.

(“The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 1), p. 474).
21. Could this be why Copernicus refers to the Earth’s orbit around the Sun as the Great Sphere 

(orbis magnus), since all the “eccentricities” are its radius? Cf. Swerdlow, “The Derivation 
and First Draft of Copernicus’s Planetary Theory” (see Note 1), p. 442 for a different 
interpretation.

22. Although the models for Mercury and Venus are somewhat different, for this exercise, we can 
refer to Venus’s model in Figure 8.

23. Of course, another way to look at this is that Copernicus has extracted this number from 
the Alphonsine tables as Swerdlow has shown. This would account for the rather odd 2256 
instead of Ptolemy’s 2250 (epicycle radius = 22.5). Swerdlow interprets 2256, unnecessarily 
in my opinion, as the eccentricity in the eccentric model of the second anomaly. See “The 
Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 1), p. 505.

24. The “a cum b” for Mercury (upper notes) was written first as 10, apparently because 
Copernicus had forgotten he wasn’t norming to 1000 (100/60 = x/6; x = 10); so 10 is crossed 
out and 2e = 6 is substituted; the 100 apparently means this number should be multiplied by 
100 to be compatible with the 2256, i.e., it should be 600. However, the lower notes imply 
540, i.e., 2e = 5.4 [(540/6000)*25 = 2;15 and 1;41¼ + 33¾ = 2;15]; for a possible explanation 
of this number, see infra.

25. For the derivation of this number, see Swerdlow, “The Derivation and First Draft of 
Copernicus’s Planetary Theory” (see Note 1), pp. 507–8.

26. Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 1), p. 425.
27. Kennedy and Roberts, “The Planetary Theory of Ibn al-Shāṭir” (see Note 6), p. 230, reprinted 

in p. 58.
28. The resultant value from Copernicus’ parameters is 2;34,4, whereas one may derive a much 

more accurate value of 3;1,7 from the De rev parameters. See Swerdlow, “The Derivation 
and First Draft of Copernicus’s Planetary Theory” (see Note 1), p. 509, where he calls the 
Commentariolus value “absurd.” Ibn al-Shāṭir’s parameters result in 3;1,53, which is close 
to Ptolemy’s 3;1,45; see Nikfahm-Khubravan and Ragep, “Ibn al-Shāṭir and Copernicus on 
Mercury” (see Note 17).

29. See Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see 
Note 1), p. 504, where he states that “This misunderstanding must mean that Copernicus 
did not know the relation of the model to Mercury’s apparent motion.” This interpretation 
has been challenged by V. Blåsjö, “A Critique of the Arguments for Maragha Influence on 
Copernicus,” Journal for the History of Astronomy, 45(2), 2014, pp. 183–95, on pp. 189–93. 
For an extended discussion of this issue and a critique of Blåsjö’s approach, see Nikfahm-
Khubravan and Ragep, “Ibn al-Shāṭir and Copernicus on Mercury” (see Note 17).
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30. Figures vary greatly in the manuscripts of Ibn al-Shāṭir’s Nihāyat al-suʾl; what is represented 
here is close to what one finds in Oxford, Bodleian, Marsh MS 139, f. 29a.

31. Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 1), 
p. 503 for the quotations from Copernicus.

32. Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 1), 
p. 507, where he derives 576(0). As he notes (pp. 508–9), Copernicus seems to have had con-
siderable problems in converting from the upper value in U for r1 + r2 to the values for the two 
epicycles in the lower part.

33. This also works, of course, if one uses 376 and 19 instead of 2256 and 115.1.
34. Y.T. Langermann, “A Compendium of Renaissance Science: Taʿalumot ḥokma by Moshe 

Galeano,” Aleph: Historical Studies in Science and Judaism, 7, 2007, pp. 283–318 on pp. 
290–6; R. Morrison, “A Scholarly Intermediary between the Ottoman Empire and Renaissance 
Europe,” Isis, 105(1), 2014, pp. 32–57.

35. A detailed argument is in preparation, which will supplement F.J. Ragep, “Copernicus and His 
Islamic Predecessors: Some Historical Remarks,” History of Science, 45, 2007, pp. 65–81.

36. Swerdlow, though, does note that dealing with the irregularities related to the first anomaly 
may have led Copernicus to investigate the second anomaly, which led to the heliocentric mod-
els; Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 
1), p. 425. See also, Swerdlow and Neugebauer, Mathematical Astronomy in Copernicus’s De 
Revolutionibus (see Note 3), part 1, p. 56:

Copernicus probably undertook an investigation of the second anomaly, and of the eccentric 
model, because even with the Marāgha solution to the first anomaly, the uniform motion 
of the planet on the epicycle must still be measured from the mean apogee lying on a line 
directed to the equant …

For B. Goldstein’s views, see “Copernicus and the Origin of His Heliocentric System,” Journal 
for the History of Astronomy, 33(3), 2002, pp. 219–35, on pp. 219–20. Goddu provides a 
summary of the views of Swerdlow and Goldstein (“Ludwik Antoni Birkenmajer and Curtis 
Wilson on the Origin of Nicholas Copernicus’s Heliocentrism” (see Note 15), pp. 227–8).

37. Goddu, “Ludwik Antoni Birkenmajer and Curtis Wilson on the Origin of Nicholas 
Copernicus’s Heliocentrism” (see Note 15).

38. Recently, there has been something of an explosion of interest in Brudzewo. Goddu provides 
a nice summary of him and the possible relation to Copernicus’ astronomy in “Ludwik Antoni 
Birkenmajer and Curtis Wilson on the Origin of Nicholas Copernicus’s Heliocentrism” (see 
Note 15), pp. 230–2, 236–43; for references, see n. 26 on p. 232 and passim. M. Malpangotto 
makes an extended argument for the importance of Brudzewo in “The Original Motivation 
for Copernicus’s Research: Albert of Brudzewo’s Commentariolum super Theoricas novas 
Georgii Purbachii,” Archive for History of Exact Sciences, 70, 2016, pp. 361–411. Goddu 
also extensively discussed Brudzewo in A. Goddu, Copernicus and the Aristotelian Tradition: 
Education, Reading, and Philosophy in Copernicus’s Path to Heliocentrism (Leiden: Brill, 
2010), for which see P. Barker and M. Vesel, “Goddu’s Copernicus: An Essay Review of 
André Goddu’s Copernicus and the Aristotelian Tradition,” Aestimatio, 9, 2012, pp. 304–
36 and A. Goddu, “A Response to Peter Barker and Matjaž Vesel, ‘Goddu’s Copernicus’,” 
Aestimatio, 10, 2013, pp. 248–76, esp. pp. 260–7.

39. I discuss Brudzewo’s model, and differentiate it from Copernicus’ bi-epicyclic device, in F.J. 
Ragep, “From Tūn to Toruń: The Twists and Turns of the Ṭūsī-Couple,” in R. Feldhay and 
F.J. Ragep (eds), Before Copernicus: The Cultures and Contexts of Scientific Learning in the 
Fifteenth Century (Montreal: McGill-Queen’s University Press, 2017 [exp.]).
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40. Wilson, “Rheticus, Ravetz, and the ‘Necessity’ of Copernicus’ Innovation” (see Note 15), 
p. 34, n. 25. This is cited by Goddu, “Ludwik Antoni Birkenmajer and Curtis Wilson on the 
Origin of Nicholas Copernicus’s Heliocentrism” (see Note 15), p. 248, who credits Robert 
Westman for bringing Wilson’s views to his attention (p. 226, n. 3).

41. For Mercury, see Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary 
Theory” (see Note 1), p. 502, Figure 40 and Swerdlow and Neugebauer, Mathematical 
Astronomy in Copernicus’s De Revolutionibus (see Note 3), part 1, p. 410; the transformation 
from Ibn al-Shāṭir’s model to the De rev model can be seen from Figure 70 (part 2, p. 657) to 
Figure 73(a) (part 2, p. 658). This is discussed in detail in Nikfahm-Khubravan and Ragep, 
“Ibn al-Shāṭir and Copernicus on Mercury” (see Note 17).

42. One of the factors could be the ordering of the planets, which Bernard Goldstein and Robert 
Westman have both claimed as the major motivation for Copernicus; Goldstein, “Copernicus 
and the Origin of His Heliocentric System” (see Note 36) and R. Westman, The Copernican 
Question (Berkeley: University of California Press, 2011), esp. pp. 76–105. Another factor could 
have been the question of the Earth’s possible rotation, which had been extensively discussed in 
both the Latin and Islamic worlds; see F.J. Ragep, “Ṭūsī and Copernicus: The Earth’s Motion in 
Context,” Science in Context, 14(1–2), 2001, pp. 145–63. On the need for a multifaceted approach 
to Copernicus, see Feldhay and Ragep (eds), Before Copernicus (see Note 39), Introduction.

43. There is in fact an extensive amount of work on the subject. The importance of homocentric 
astronomy, especially for Regiomontanus, has been emphasized by Michael Shank in sev-
eral articles: M.H. Shank, “The ‘Notes on al-Biṭrūjī’ Attributed to Regiomontanus: Second 
Thoughts,” Journal for the History of Astronomy, 23(1), 1992, pp. 15–30; M.H. Shank, 
“Regiomontanus and Homocentric Astronomy,” Journal for the History of Astronomy, 29(2), 
1998, pp. 157–66. Robert Morrison has also drawn our attention to the Jewish role in dissemi-
nating homocentric astronomy in Europe: R.G. Morrison, The Light of the World: Astronomy 
in al-Andalus (Berkeley; Los Angeles: University of California Press, 2016). See also the 
important article by N.M. Swerdlow, “Regiomontanus’s Concentric-Sphere Models for the 
Sun and the Moon,” Journal for the History of Astronomy, 30(1), 1999, pp. 1–23. Swerdlow 
had earlier noted the interest in homocentric astronomy in N.M. Swerdlow, “Aristotelian 
Planetary Theory in the Renaissance: Giovanni Battista Amico’s Homocentric Spheres,” 
Journal for the History of Astronomy, 3(1), 1972, pp. 36–48. Homocentric astronomy in 
early modern Europe is also dealt with by M. Di Bono, Le sfere omocentriche di Giovan 
Battista Amico … (Genoa: Centro di Studio sulla Storia della Tecnica, 1990); E. Peruzzi, La 
nave di Ermete: la cosmologia di Girolamo Fracastoro (Florence: Olschki, 1995). Goldstein 
has connected the ordering of the planets, which he sees as crucial for Copernicus, to the 
Averroists (“Copernicus and the Origin of His Heliocentric System” (see Note 36), p. 225). 
On Averroism in early modern Europe, see A. Akasoy and G. Giglioni, Renaissance Averroism 
and Its Aftermath: Arabic Philosophy in Early Modern Europe (Dordrecht: Springer, 2013). 
I was intrigued to discover that “Birkenmajer concluded that Copernicus knew the Averroist 
critique of Ptolemaic models, and he believed that the critique motivated Copernicus to adopt 
concentric models initially.” (Goddu, “Ludwik Antoni Birkenmajer and Curtis Wilson on the 
Origin of Nicholas Copernicus’s Heliocentrism” (see Note 15), p. 242).

44. Swerdlow, “The Derivation and First Draft of Copernicus’s Planetary Theory” (see Note 1), 
p. 434.

45. A.I. Sabra, “The Andalusian Revolt against Ptolemaic Astronomy: Averroes and al-Biṭrūjī,” 
in E. Mendelsohn (ed.), Transformation and Tradition in the Sciences: Essays in Honor of 
I. Bernard Cohen (Cambridge: Cambridge University Press, 1984), pp. 133–53, reprinted 
in A.I. Sabra, Optics, Astronomy and Logic: Studies in Arabic Science and Philosophy, XV 
(Aldershot: Ashgate Variorum Reprints, 1994). Saliba has argued against such a dichotomiza-
tion in his “Critiques of Ptolemaic Astronomy in Islamic Spain” (see Note 9).
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46. Morrison, The Light of the World (see Note 43), p. 44, n. 165, also associates the astronomy 
of Ibn al-Shāṭir with the homocentric astronomy of Ibn Naḥmias (fl. ca. 1400 c.e.), someone 
who may well have been known in Renaissance Italy. Morrison, following Saliba (see Note 9 
supra), notes that Ibn al-Shāṭir made a strict distinction between eccentrics, which were unac-
ceptable, and epicycles, which were possible, likening them to stars or planets that were also 
embedded in the cosmos; this could well have opened the way for an Aristotelian or Averroist 
to accept Ibn al-Shāṭir’s “quasi-homocentrism.” Morrison also points to Profiat Duran (d. ca. 
1415) as someone who interpreted Maimonides’ doctrine of homocentricity as allowing for 
epicycles (Morrison, The Light of the World, p. 16).

47. The fact that the transformations are mathematically consistent with Regiomontanus’ propo-
sitions does not entail that they were actually used by Copernicus.

48. For example, Naṣīr al-Dīn al-Ṭūsī in his Tadhkira states,

They placed the sun in the medial orb between the former and the latter … deeming this the 
most elegant arrangement and the most excellent structure inasmuch as the six were con-
nected to it – the upper [planets] in a certain way, the lower in another and the moon in yet 
another.

(F.J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir on Astronomy (al-Tadhkira fī ʿilm al-hayʾa), 2 
vols. (New York: Springer-Verlag, 1993), vol. 1, p. 110). Cf. G.J. Toomer (trans.), Ptolemy’s 
Almagest (London: Duckworth, 1984), pp. 419–20 [H207]. For the Latin West, see E. Grant, 
Planets, Stars, and Orbs: The Medieval Cosmos, 1200–1687 (Cambridge: Cambridge 
University Press, 1994), p. 233.
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Abstract. Copernicus’ complex Mercury model in De revolutionibus is virtually iden-
tical, geometrically, to Ibn al-Šāṭir’s (ca. 1305 – ca. 1375). However, the model in his 
earlier Commentariolus is different and in many ways unworkable. This has led some to 
claim that the younger Copernicus did not understand his predecessor’s model; others 
have maintained that Copernicus was working totally independently of Ibn al-Šāṭir. We 
argue that Copernicus did have Ibn al-Šāṭir’s models but needed to modify them to con-
form to a “ quasi-homocentricity ” in the Commentariolus. This modification, and the 
move from a geocentric to heliocentric cosmology, was facilitated by the “ heliocentric 
bias ” of Ibn al-Šāṭir’s models, in which the Earth was the actual center of mean motion, 
in contrast to Ptolemy and most Islamicate astronomers. We show that: 1) Ibn al-Šāṭir 
sought to reproduce Ptolemy’s critical elongation at the trines (±120°), but changed the 
Ptolemaic values at 0, ±90, and 180°; 2) in the Commentariolus, Copernicus does not 
try to produce viable elongations for Mercury; and 3) by the time of writing De revo-
lutionibus, Copernicus is in full control of the Mercury model and is able to faithfully 
reproduce Ptolemy’s elongations at all critical points. We also argue that claims regard-
ing “ natural ” solutions undermining transmission are belied by historical evidence.

Résumé. Le modèle complexe de Mercure dans le De revolutionibus de Copernic est 
virtuellement identique, géométriquement, à celui d’Ibn al-Šāṭir (ca. 1305 – ca. 1375). 
Cependant, le modèle, antérieur, du Commentariolus est différent et il fonctionne mal. 
Certains en ont déduit que le jeune Copernic n’avait pas compris le modèle de son pré-
décesseur ; d’autres ont affirmé que l’œuvre de Copernic était totallement indépendante 
d’Ibn al-Šāṭir. Nous soutenons que Copernic avait les modèles d’Ibn al-Šāṭir mais qu’il a 
dû les modifier pour les rendre “ quasi-homocentriques ” dans le Commentariolus. Cette 
modification et le passage d’une cosmologie géocentrique à une cosmologie héliocen-
trique étaient rendus aisés par le “ biais héliocentrique ” des modèles d’Ibn al-Šāṭir, pour 
qui la Terre était le centre effectif du mouvement moyen, contrairement à  Ptolémée et 
à la plupart des astronomes islamiques. Nous montrons que : 1) Ibn al-Šāṭir a cherché 
à reproduire les élongations critiques à ±120° de l’apogée, mais il a changé les valeurs 
ptoléméennes à 0, ±90 et 180° ; 2) dans le Commentariolus, Copernic n’essaie pas de 
reproduire des élongations viables pour Mercure ; et 3) au moment de la rédaction du De
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revolutionibus, Copernic contrôle pleinement le modèle de Mercure et il est capable de
reproduire les élongations de Ptolémée aux points critiques. Nous soutenons aussi que
les arguments concernant des solutions “ naturelles ” qui excluent la transmission sont
niés par l’évidence historique.

1. INTRODUCTION

We begin with a remarkable but little-remarked fact: Copernicus’ most com-
plex planetary model in De revolutionibus, that for Mercury, is for all intents and
purposes virtually identical, geometrically, to Ibn al-Šāṭir’s (ca. 1305 – ca. 1375).
But even more significant, it is simple to transform Ibn al-Šāṭir’s geocentric
model into Copernicus’ final, heliocentric model. (See figures 1 and 2; a fuller
analysis will be given below.)

One would have expected this virtual equivalence to be something that would
have elicited considerable interest and provoked numerous explanations among
scholars, especially since it was stated clearly by E. S. Kennedy and Victor
Roberts in their seminal paper on Ibn al-Šāṭir’s planetary theory, published in
Isis in 1959 1. Curiously, this has received scant attention in much of the re-
cent writings on Copernicus or else has been dismissed. Michel-Pierre Lerner
and Alain-Philippe Segonds, in their notes on the Mercury model in De revo-
lutionibus, do not mention Ibn al-Šāṭir or his model 2, nor does Michela Mal-
pangotto in her article on Peurbach’s Mercury model that is audaciously entitled
“ L’Univers auquel s’est confronté Copernic ” 3. Robert Westman, in his massive
tome on Copernicus, mentions Ibn al-Šāṭir only once, and that in a minor foot-
note related to the lunar model 4. André Goddu even denies the similarity of the
models, opining that “ Experts have exaggerated the supposed identity between

1 E. S. Kennedy and V. Roberts, “ The Planetary theory of Ibn al-Shāṭir ”, Isis, 50/3 (1959):
227-35 at 232-3, reprinted E. S. Kennedy, “ Colleagues and former students ”, in D. A. King
and M. H. Kennedy (ed.), Studies in the Islamic exact sciences (Beirut, 1983), p. 55-63 at
60-1.

2 Nicolas Copernic, De revolutionibus orbium coelestium (Des révolutions des orbes célestes),
3 vol., transl. M.-P. Lerner and A.-P. Segonds with the collaboration of C. Luna, I. Pantin, and
D. Savoie (Paris, 2015), vol. III, p. 394-409. Elsewhere they at least mention the similarity of
the lunar models of Ibn al-Šāṭir and Copernicus but immediately cast doubt on its significance
(III, 307; see also I, 311, 354, n. 1, 553-4).

3 M. Malpangotto, “ L’Univers auquel s’est confronté Copernic: La sphère de Mercure dans
les Theoricae novae planetarum de Georg Peurbach ”, Historia mathematica, 40/3 (2013):
262-308.

4 R. S. Westman, The Copernican question: Prognostication, skepticism, and celestial order
(Berkeley, 2011), p. 531, n. 136.
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Copernicus’ and al-Shatir’s models and the Tusi couple… The question should
be reconsidered 5 ”. A different tack is taken by Viktor Blåsjö, who insists that
similarities between models can be explained by there being “ natural ” solutions
that would lead Copernicus and Ibn al-Šāṭir to come to similar conclusions with-
out the necessity of assuming influence 6. (More on this later.)

On the other hand, Noel Swerdlow, throughout his career, has insisted that the
similarities between Copernicus’ models and those of his Islamic predecessors
“ is so close that independent invention by Copernicus is all but impossible 7 ”.
But for Mercury (as well as for Venus) this creates something of an unacknowl-
edged conundrum for Swerdlow. Since Ibn al-Šāṭir’s Mercury model and Coper-
nicus’ in De revolutionibus are virtually the same, one must then explain why
the Commentariolus model (from some 30 years earlier) is different, not to say
flawed, if, as Swerdlow has maintained, Copernicus did have Ibn al-Šāṭir’s one
and only Mercury model when composing the Commentariolus. Swerdlow has
provided a complex scenario, most recently repeated in an article, that culminates
with the Commentariolus model 8. But it has seemed odd to us that Copernicus
substituted a flawed model when, according to Swerdlow, he had a much better
one immediately at hand. We are also uncomfortable with the numerous ad hoc
assumptions Swerdlow needs to make in order for Copernicus to reach, over a
30-year period, essentially what he had all along. Thus part of the purpose of
this paper is to suggest an alternative account that we believe provides a more
straightforward explanation 9. Inasmuch as Swerdlow has already offered a cri-
tique of some of the central points in this paper, we will need to respond to his
criticisms 10.

5 A. Goddu, Copernicus and the Aristotelian tradition: Education, reading, and philosophy in
Copernicus’s path to heliocentrism (Leiden, 2010), p. 157.

6 V. Blåsjö, “ A critique of the arguments for Maragha influence on Copernicus ”, Journal for
the history of astronomy, 45/2 (2014): 183-95.

7 N. Swerdlow, “ Copernicus, Nicolaus (1473-1543) ”, in W. Applebaum (ed.), Encyclopedia
of the scientific revolution from Copernicus to Newton (New York, 2000), p. 165.

8 N. M. Swerdlow, “ The Derivation and first draft of Copernicus’s planetary theory: A transla-
tion of the Commentariolus with commentary ”, Proceedings of the American Philosophical
Society, 117/6 (1973): 423-512, esp. 471-8, 499-509. Swerdlow usefully summarizes his po-
sition in “ Copernicus’s derivation of the heliocentric theory from Regiomontanus’s eccentric
models of the second inequality of the superior and inferior planets ”, Journal for the history
of astronomy, 48/1 (2017): 33-61, esp. 33-44.

9 A preliminary attempt to deal with Copernicus’ Mercury models and their connection to that
of Ibn al-Šāṭir is in F. J. Ragep, “ Ibn al-Shāṭir and Copernicus: The Uppsala notes revisited ”,
Journal for the history of astronomy, 47/4 (2016): 395-415 at 400-6.

10 Swerdlow, “ Copernicus’s derivation of the heliocentric theory ”, p. 45-61.

3
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Fig. 1. Ibn al-Šāṭir’s Mercury model in Nihāyat al-su’l. Moving the mean Sun
to F results in the “ Tychonic ” version of the De rev. model. (Not to scale ∗.)
∗ For reasons of visualization, our figures are not to scale; in general, we use a mean motion

(α) of 35°, which entails an epicycle motion (κ) of ca. 75°. In drafting the figures, we assume
that the deferent apogee and epicycle apex are on the apsidal line when α = 0°. Darker lines
indicate the sequence of the radii of the orbs from the Earth to the planet due to the various
motions. Animations illustrating the transformation of Ibn al-Šāṭir’s models into those of
Copernicus may be found at https://islamsci.mcgill.ca/MercuryAnimations/.
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Fig. 2. Copernicus’ Mercury model in De revolutionibus. (Not to scale.)
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Another aim of this paper is to deal with Blåsjö’s claims regarding what he
calls the “ equivalence ” of the Mercury models in the Almagest and the Com-
mentariolus, as well as his insistence that there is a “ natural ” route that goes
from Ptolemy to the more correct models in De revolutionibus that undermines
transmission. To do this, we need to provide detailed discussions of the Mercury
models of Ptolemy, in addition to those of Ibn al-Šāṭir and Copernicus. The for-
mer has been discussed competently and in detail by a number of historians 11,
but it will be useful to summarize a few salient points for our analysis. For
Copernicus, we have Swerdlow’s translation and study of the Commentariolus
as well as Swerdlow and Neugebauer’s lengthy study of De revolutionibus 12,
both being indispensable for this paper. As for Ibn al-Šāṭir’s model, there are
good presentations by E. S. Kennedy and Victor Roberts 13, as well as by Willy
Hartner 14; however, their work did not delve deeply enough for the kind of com-
parisons that will allow us to see how Copernicus appropriated the work of his
predecessors. Another problem is that up until recently, there have been no pub-
lished editions or translations of Ibn al-Šāṭir’s Nihāyat al-su’l where he presents
his Mercury model 15. So in appendices 2 and 3, we provide a translation and
critical edition of chapter 21 of part 1 of his work that deal with Mercury, based
on ten manuscripts.

11 See, for example, O. Pedersen, A survey of the Almagest, reprint of the 1974 orig. ed. with
annotation and new commentary by A. Jones (New York, 2011), p. 309-28; O. Neugebauer,
A history of ancient mathematical astronomy, 3 parts (Berlin / New York, 1975), I, 158-69;
and esp. N. Swerdlow, “ Ptolemy’s theory of the inferior planets ”, Journal for the history of
astronomy, 20/1 (1989): 29-60 at 43-59.

12 Swerdlow, “ The Derivation and first draft ”, p. 499-509; N. M. Swerdlow and O. Neugebauer,
Mathematical astronomy in Copernicus’s De revolutionibus, 2 parts (New York, 1984), I,
403-43.

13 Kennedy and Roberts, “ The Planetary theory of Ibn al-Shāṭir ”, p. 231-2.
14 W. Hartner, “ Ptolemy, Azarquiel, Ibn al-Shāṭir, and Copernicus on Mercury: A study of

parameters ”, Archives internationales d’histoire des sciences, 24/4 (1974): 5-25, reprinted
in W. Hartner, Oriens-Occidens: Ausgewählte Schriften zur Wissenschafts- und Kul-
turgeschichte: Festschrift zum 60. Geburtstag, ed. Y. Maeyama, 2 vol. (Hildesheim: Olms,
1968-1984), vol. II p. 292-312.

15 G. Saliba does give an English translation of the Saturn chapter in his “ Arabic astronomy and
Copernicus ”, Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaften, 1 (1984):
73-87 at 81-2, reprinted in G. Saliba, A history of Arabic astronomy: Planetary theories
during the golden age of Islam (New York, 1994), p. 291-305 at 299-300. E. Penchèvre has
recently published an edition and French translation of part 1, ch. 25 of Nihāyat al-su’l, which
deals with the latitude theory for Venus and Mercury (“ Vénus selon Ibn al-Šāṭir ”, Arabic
sciences and philosophy, 26/2 (2016): 185-214 at 202-14). Penchèvre has also put online an
edition, French translation, and commentary of the Nihāyat al-su’l at arXiv.org (https://
arxiv.org/abs/1709.04965: “ La Nihāya al-sūl fī taṣḥīḥ al-’uṣūl d’Ibn al-Šāṭir: Édition,
traduction et commentaire ”; accessed 27 February 2018).

6
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As an aside before we begin: because this paper deals with a controversial
topic, and the ideas underlying it have generated a fair amount of criticism, we
thought we should provide a summary of what we are claiming as well as not
claiming.

1) We are not claiming that Ibn al-Šāṭir ever entertained, or even thought
about, a heliocentric cosmology. At least we have no evidence to support such a
contention. He has developed a quite coherent geocentric cosmological system,
which is what we assume he intended.

2) When we say Ibn al-Šāṭir’s models have a “ heliocentric bias ”, we mean
that Ibn al-Šāṭir has made the Earth the center of mean motion (α). This gives
his system a certain “ bias ” that makes the transformation from a geocentric
to heliocentric system much easier. For details, see Ragep, “ Ibn al-Šāṭir and
Copernicus ”.

3) Whether one believes that Copernicus appropriated Ibn al-Šāṭir’s models,
or reinvented them on their own, it is incontrovertible that one cannot get to
Copernicus’ models, either in the Commentariolus or De rev., without models
that are virtually identical to Ibn al-Šāṭir’s.

4) We claim that Copernicus in all likelihood did not develop his models on
his own; the similarities with those of Ibn al-Šāṭir are just too many to make a
plausible case for independent discovery. As we will show below, this is espe-
cially true for Mercury.

5) Our proposal for the transformation from Ibn al-Šāṭir’s geocentric models
to Copernicus’ heliocentric ones is, we claim, much simpler than any of the al-
ternatives. In particular, the proposal by Noel Swerdlow (discussed below) does
lead to simple heliocentric models, but these are not the actual, computationally
viable models we find in the Commentariolus or De rev.

6) We make no claims about why Copernicus decided to introduce heliocen-
tric models. In particular, we are not claiming that the “ heliocentric bias ” of
Ibn al-Šāṭir’s models was the reason behind Copernicus’ choice. What we are
claiming is that Ibn al-Šāṭir’s models were easier to transform into the helio-
centric models of the Commentariolus and De rev. than the other possibilities
available to Copernicus.

7) When we say that Ibn al-Šāṭir’s models and those in the Commentario-
lus are “ quasi-homocentric ”, we mean that they eschew eccentrics and depend
solely on concentric and epicyclic orbs. Though speculative, we think it is plau-
sible that both Ibn al-Šāṭir and Copernicus in the Commentariolus were trying to
find a system that had elements of homocentrism while at the same time being
more astronomically viable than a purer form of homocentric astronomy.

7
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2. PTOLEMY’S MERCURY MODEL

Ptolemy found Mercury to be the most problematic planet he had to deal with,
in part because of the difficulties involved in viewing a planet whose maximum
elongation from the Sun is about 28°, in part because of several unfortunate as-
sumptions 16. Our purpose here, however, is not to critique Ptolemy’s method-
ology or observations but simply to present his model, both as it appears in the
mathematical-schematic version in the Almagest and in the physical, solid-sphere
versions of the Islamic hay’a and Latin theorica traditions. As is well known,
the origins of the latter are to be found in Ptolemy’s Planetary hypotheses, which
was the basis of the hay’a tradition and from it the Latin theoricae (the Planetary
hypotheses not being available in Europe in the medieval period).

The model for Mercury as presented in the Almagest is represented in fig-
ure 3 17.

There are several things that make Mercury distinctive:
1) Unlike the case of the other four “ vacillating ” planets (i. e., the ones that

exhibit retrogradation), the center of equal motion E is placed closer to the world
center O, while the deferent center N, which maintains equal distance R to the
epicycle center C, is usually (except once in a cycle) farther away. For the other
planets, the order of centers (toward the apogee) is O-N-E.

2) Distinctive among the vacillating planets, but similar to what was done for
the Moon, the deferent center is not fixed but moves on a small circle, coinciding
with E once every cycle.

3) The result of this configuration is that the epicycle center is not closest
to the Earth at 180°, as it is for the other vacillating planets, but at two places,
±120°, which fulfills his empirical conditions (figure 4 18).

So far, we have only discussed the model as presented in the Almagest. But
in a hay’a work, as later in Peurbach’s Theoricae, the plane geometrical models
of the Almagest are transformed into full-fledged spherical models in which cir-
cles were made into uniformly rotating orbs – fully spherical epicycles that do
not surround the Earth or concentric and eccentric hollowed-out spheres that do
surround the Earth. Thus a typical hay’a illustration for Mercury would appear
as figure 5 19.

16 For some of these assumptions, see Swerdlow, “ Ptolemy’s theory of the inferior planets ”,
p. 43-59.

17 Figure 3 is a modified version of fig. 11 in Swerdlow, “ Ptolemy’s theory of the inferior plan-
ets ”, p. 50.

18 Figure 4 is a modified version of fig. 13 in Swerdlow, “ Ptolemy’s theory of the inferior plan-
ets ”, p. 52.

19 Figure 5 is adapted from S. P. Ragep, Jaghmīnī’s Mulakhkhaṣ: An Islamic introduction to
Ptolemaic astronomy (New York, 2016), figure 4, p. 96.

8
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Circle Radius Motion
Parecliptic (OE+EM+
MN + NC + CP) 91; 30 parts +1°/100 years
Dirigent (MN) 3 parts −0; 59, 8, 17, 13, 12, 31°/day (−α)
Deferent (NC = R) 60 parts +1; 58, 16, 34, 26, 25, 2°/day ∗ (2α)
Epicycle (CP) 22; 30 parts +3; 6, 24, 6, 59, 35, 50°/day (γ)

∗ This is an “ average ” speed since point N is not the center of the deferent’s uniform motion.

Chart 1. Ptolemy’s Almagest parameters for Mercury (see fig. 3) (plus / minus
indicates sequential / counter-sequential zodiacal motion).

There are several points that should be noted. First, Mercury, unlike the mod-
els for the upper planets and Venus, has four rather than three orbs (not counting
the planet itself). The three orbs in common are the parecliptic (responsible for
the motion of the apogee), the deferent (the basis for the mean zodiacal motion),
and the epicycle (the source for the synodic motion). But in addition, Mercury
has a dirigent (mudīr) that causes the deferent center to move on a circle that
brings it closer and farther away from the world center. Another feature of the
model is that a point on the deferent, and in particular the epicycle center (which
is located in the deferent), cuts equal angles in equal times not with respect to the
deferent center (as one would expect based on the principle of uniform circular
motion in the celestial region), but with respect to the equant point, which is lo-
cated mid-way between the world center and dirigent center on the apsidal line.
There are thus 4 critical points on the apsidal line (this at the initial position,
i. e., when the epicycle center is at apogee): the world center, the equant point,
the dirigent center, and the deferent center. For Ptolemy in the Almagest, the
distance between the world center and equant point is 3 parts where the distance
from the deferent center to epicycle center is 60 parts; likewise, the distance
from the equant point to the dirigent center is 3 parts and the distance from the
dirigent center to the deferent center is 3 parts. The upshot of this arrangement
and the stipulated motions for the orbs is that the epicycle center will trace an
oval-shaped figure in which the nearest approach to the world center (and the
Earth) occurs at about 120° and 240°, whereas the farthest distance is, as one
would expect, at 0°. (Figure 6 shows how this was illustrated in Ṭūsī’s Taḏkira;
note in particular the explicit designation of the nearest distances at the trines.
For the parameters see chart 1.)

9
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α: mean motion
γ: motion of epicycle (Ptolemaic)
A: apogee
B: point opposite apogee
C: epicycle center
E: equant point (about which equal motion of the epicycle center occurs)
M: center of circle about which the deferent center moves
N: deferent / eccentric center
O: world center
P: planet
R: radius of deferent
⊙: mean Sun

Fig. 3. Ptolemy’s Mercury model.
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Fig. 4. Epicycle center at first trine.

3. THE MERCURY MODEL OF IBN AL-ŠĀṬIR

As is well known, Islamic astronomers criticized Ptolemy’s models from an
early period, at least as early as the first half of the eleventh century 20. The par-
ticular form that these criticisms took, leading to such devices as the Eudoxan-
couple, the Ṭūsī-couple, the ‘Urḍī lemma, Ibn al-Šāṭir’s double epicycle device,
and their associated models, would seem to have been a particularly Islamicate
phenomenon associated mainly with the eastern Islamic world 21. The main idea
was to reform the Ptolemaic system by making it conform to the accepted physics

20 From this period we have Ibn al-Haytham’s remarkable work Al-Šukūk ‘alā Baṭlamyūs
(“ Doubts about Ptolemy ”), A. I. Sabra and N. Shehaby (ed.) (Cairo, 1971; 2nd ed., Cairo,
1996) as well as the treatise by Abū ‘Ubayd al-Jūzjānī, an associate of Ibn Sīnā (for which
see G. Saliba, “ Ibn Sīnā and Abū ‘Ubayd al-Jūzjānī: The problem of the Ptolemaic equant ”,
Journal for the history of Arabic science, 4 (1980): 376-403, reprinted in G. Saliba, A history
of Arabic astronomy, p. 85-112).

21 For a summary, see G. Saliba, “ Arabic planetary theories after the eleventh century AD ”,
in R. Rashed (ed.), Encyclopedia of the history of Arabic science, 3 vol. (London, 1996), I,
58-127. On the “ Eudoxan-couple ” in Islam, see F. J. Ragep, “ Ibn al-Haytham and Eudoxus:
The revival of homocentric modeling in Islam ”, in C. Burnett et al. (ed.), Studies in the history
of the exact sciences in honour of David Pingree (Leiden, 2004), p. 786-809. An overview
of the Ṭūsī-couple and its cross-cultural transmission can be found in F. J. Ragep, “ From
Tūn to Toruń: The twists and turns of the Ṭūsī-couple ”, in R. Feldhay and F. J. Ragep (ed.),
Before Copernicus: The cultures and contexts of scientific learning in the fifteenth century
(Montreal, 2017), p. 161-97.
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Fig. 5. A hay’a model for Mercury.
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Fig. 6. From Ṭūsī’s Memoir on astronomy.
[F. J. Ragep, Naṣīr al-Dīn al-Ṭūsī’s Memoir on astronomy

(Al-Tadhkira fī ‘ilm al-hay’a), 2 vol. (New York, 1993), I, 176.]
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that required uniform circular motion in the heavens. As such, devices such as
the equant were replaced by combinations of uniformly rotating orbs. Now the
reason we say that it is an eastern Islamicate phenomenon, contingent on cer-
tain intellectual and possibly social and religious trends, is that other examples
we have of criticisms of Ptolemy took different approaches. For example, Pro-
clus in his Hypotyposis is highly critical of Ptolemy’s eccentric and epicyclic
models but offers no criticism of the equant and has nothing to offer in the way
of alternatives 22. In the western Islamic world, in particular in twelfth-century
al-Andalus, one has a quite dissimilar set of criticisms leading to the homocen-
tric alternative of al-Biṭrūjī that is mostly rejected in the Islamic East 23. Pre-
Copernican alternatives in Europe are either of a far different sort (e. g., those
of the fourteenth-century Jewish scholar Levi ben Gerson 24) or are based on al-
ternatives that clearly can be traced to Islamic precedents (such as those of Ibn
Naḥmias, Regiomontanus, and Giovanni Battista Amico 25). For this reason,
Copernicus’ criticism of the equant in the introduction to the Commentariolus,
and his models meant to rectify it, are strikingly innovative within a European
context 26.

22 Proclus, Procli Diadochi Hypotyposis astronomicarum positionum, ed. C. Manitius (Leipzig,
1909; reprint, Stuttgart, 1974). For a well-informed analysis of Proclus’ attitude toward as-
tronomy (and an important corrective to Pierre Duhem’s discussion in his Σώζειν τὰ φαι-
νόμενα), see G. E. R. Lloyd, “ Saving the appearances ”, Classical quarterly, 28/1 (1978):
202-22, esp. 204-11 (reprinted with new introduction in G. E. R. Lloyd, Methods and prob-
lems in Greek science [Cambridge, 1991], p. 248-77).

23 A. I. Sabra, “ The Andalusian revolt against Ptolemaic astronomy: Averroes and al-Biṭrūjī ”,
in E. Mendelsohn (ed.), Transformation and tradition in the sciences: Essays in honor of
I. Bernard Cohen (Cambridge, 1984), p. 133-53, reprinted in A. I. Sabra, Optics, astronomy
and logic: Studies in Arabic science and philosophy, XV (Aldershot, 1994).

24 B. R. Goldstein, The Astronomy of Levi Ben Gerson (1288-1344): A critical edition of chap-
ters 1-20 with translation and commentary (New York, 1985).

25 On Ibn Naḥmias, see R. G. Morrison, The Light of the world: Astronomy in al-Andalus
(Berkeley, 2016). On Regiomontanus, see N. Swerdlow, “ Regiomontanus’s concentric-
sphere models for the Sun and Moon ”, Journal for the history of astronomy, 30/1 (1999):
1-23; M. H. Shank, “ The ‘ Notes on al-Biṭrūjī ’ attributed to Regiomontanus: Second
thoughts ”, Journal for the history of astronomy, 23/1 (1992): 15-30; and M. H. Shank,
“ Regiomontanus and homocentric astronomy ”, Journal for the history of astronomy, 29/2
(1998): 157-66. For Amico, see N. Swerdlow, “ Aristotelian planetary theory in the Renais-
sance: Giovanni Battista Amico’s homocentric spheres ”, Journal for the history of astron-
omy, 3/1 (1972): 36-48; and M. di Bono, “ Copernicus, Amico, Fracastoro, and Ṭūsī’s device:
Observations on the use and transmission of a model ”, Journal for the history of astronomy,
26/2 (1995): 133-54. See also R. Morrison, “ A scholarly intermediary between the Ottoman
Empire and Renaissance Europe ”, Isis, 105/1 (2014): 32-57.

26 Alternatively, Michela Malpangotto has argued that the original motivation for Coperni-
cus’ criticism of the equant and his research leading to heliocentrism came from Albert of
Brudzewo (d. ca. 1497); “ The Original motivation for Copernicus’s research: Albert of
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On the other hand, Ibn al-Šāṭir is the inheritor of a long tradition of Islamic
criticisms of Ptolemy and of the alternatives these gave rise to. Unfortunately,
these alternatives are still referred to by the generic term “ Marāgha ” even though
there are few if any models that can be attributed to the years of operation of the
Mongol-sponsored Marāgha Observatory (roughly 1260-83); most of the theo-
retical work of Mu’ayyid al-Dīn al-‘Urḍī (d. ca. 1266) and Naṣīr al-Dīn al-Ṭūsī
(1201-74) predates their time at the Observatory, and the major astronomical
works of Quṭb al-Dīn al-Šīrāzī (d. 1311) were written after he left Marāgha. And
we know that there were alternative models long before Marāgha gained promi-
nence as a Mongol capital, and these models continued to be proposed centuries
afterwards 27. So we need to see Ibn al-Šāṭir in the fourteenth century as one
of a series of astronomers, spanning six or more centuries, who worked to find
models that provided results comparable to those of Ptolemy while adhering to
the accepted celestial physics.

Ibn al-Šāṭir, the long-time chief muezzin (ra’īs al-mu’aḏḏinīn) and time-
keeper (muwaqqit) at the Umayyad Mosque in Damascus, was distinctive for
a number of reasons 28. Unlike his “ Marāgha ” predecessors, he rejected ec-
centrics, so attempted to base his alternatives on concentrics (orbs whose center
was the Earth) and epicycles. He also made strong claims that his work was
based on new observations. Unfortunately, his major work in which he claims
to have explained the observational basis for his new models, Ta‘līq al-arṣād
(“ Explanation of the observations ”), is lost to us. What we have is a kind of
summary account of his models, contained in a hay’a work entitled Nihāyat al-
su’l fī taṣḥīḥ al-uṣūl (“ The culmination of inquiry into correcting the hypothe-
ses ”). The Mercury model is presented in chapter 21 of part 1; our translation
and edition are in appendices 2 and 3.

Brudzewo’s Commentariolum super Theoricas novas Georgii Purbachii ”, Archive for his-
tory of exact sciences, 70/4 (2016): 361-411. Though Brudzewo, and earlier Henry of Hesse,
do indeed point out the problems related to the equant, it is not entirely clear that this is done
with the same motivation of Islamic astronomers who put in place a program for reforming the
Ptolemaic system. As Edith Sylla has put it, in response to Malpangotto’s contentions regard-
ing the equant: “ Contrary to Malpangotto, I think that Peurbach and Brudzewo both accept
the idea that there are some physical orbs uniformly rotating and other, purely mathemati-
cal methods that do not correspond to bodies. Brudzewo is not disappointed with Peurbach
but is elucidating positions with which Peurbach would have agreed ”. E. Sylla, “ The Sta-
tus of astronomy as a science in fifteenth-century Cracow: Ibn al-Haytham, Peurbach, and
Copernicus ”, in Feldhay and Ragep, Before Copernicus, p. 45-78 at 78.

27 For a critique of “ Marāgha ” as a shorthand for this long tradition, see S. P. Ragep and
F. J. Ragep, “ The ‘ Marāgha school ’: The myth and its prequel ”, forthcoming.

28 For an overview of his life and works, see S. Nikfahm-Khubravan and F. J. Ragep, “ Ibn al-
Shāṭir ”, Encyclopaedia of Islam, 3rd ed., forthcoming.

15



212   Islamic Astronomy and Copernicus

The model itself consists of seven solid orbs 29 (see figure 7): 1) the par-
ecliptic [r0]; 2) the inclined [r1]; 3) the deferent [r2]; 4) the dirigent [r3]; 5)
the epicycle [r4]; 6) the enclosing [r5]; 7) the maintaining [r6]. r0, r1, . . . des-
ignate the radii of the orbs in the schematic version (figure 10); their values
are given in chart 2. This allows radii of the “ schematic ” equators to be consid-
ered, somewhat anachronistically, as linked, uniformly rotating vectors 30. These
radii, determined by the planetary parameters, are of the “ inner equators ” (in-
dicated in dashed lines in figure 8) of the solid orbs, which are parallel to the
“ outer equators ” on the surface of the orb. (For a further explanation of these
“ inner equators ”, see Ragep, Ṭūsī’s Memoir on astronomy, II, 435-6, as well as
I, 350-3, fig. C11-C15 for examples.)

Since the parecliptic only causes the slow motion of the apogee (one degree
per 60 years 31), we will ignore it in the subsequent analysis. The combination
of the inclined, deferent, and dirigent will result in the apex of the epicycle being
displaced by 2α; thus in figure 9, which is a schematic version of figure 7, we
note that the epicyclic apex A, which for Ptolemy is on the line from the equant
through the epicycle center, has shifted from A0 to A1 when α = 90°. The
enclosing and maintaining orbs will therefore also be 90° from the Ptolemaic
“ reference apex ” A0 of the epicycle. Practically, this means that the epicycle’s
daily motion for Ibn al-Šāṭir (as also for Copernicus in De revolutionibus) is
≈ 2; 7° (κ) rather than ≈ 3; 6° (γ) as it was for Ptolemy. Ibn al-Šāṭir refers
to the sum of his epicycle’s motion (κ) plus the mean motion of center (α) as
the “ proper ” [khāṣṣa] motion of the epicycle, which is the motion of anomaly
(γ = κ+ α) in the Ptolemaic model.

The final two orbs, the enclosing and maintaining, form a Ṭūsī-couple: in
the schematic model (figure 9) they are the same size but in the full, solid-sphere

29 Solid here refers to the substance of the orbs, whereby other bodies are precluded from moving
through them. Of course, another solid body can be embedded within a solid orb; e. g., an
epicycle is embedded within a deferent orb, each rotating with its own motion. As one can
see in figure 7, all of Ibn al-Šāṭir’s orbs (except for the planet itself) contain one or more orbs
embedded within them.

30 Kennedy and Roberts, “ The Planetary theory of Ibn al-Shāṭir ”, p. 231, fig. 2.
31 Earlier in the Nihāya, Ibn al-Šāṭir cites 1°/100 years (Ptolemy) as well as 1°/ 66 2/3 years and

1°/70 years (the “ Moderns ”) as possible values for precession (part I, ch. 3 and ch. 5), which
one would expect to be equivalent to the motion of apogee. In fact, in Al-Zīj al-jadīd, Ibn al-
Šāṭir tells us that the motion of the apogees for all the planets is 1°/60 years, whereas the
precessional motion is 1°/70 years. He claims the proof can be found in his Ta‘līq al-arṣād,
which unfortunately is not extant. See Leiden ms. Or. 65, f. 49b.
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Fig. 7. Ibn al-Šāṭir’s Mercury model
(solid-orb version at four different positions).
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Fig. 8. “ Inner equators ” (in dashed lines) of the solid orbs. (Not to scale.)
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C: epicycle center
F: deferent center
O: world center
Q: transposed Ptolemaic equant
A0: (Apex)0
A1: (Apex)1

Fig. 9. Ibn al-Šāṭir’s Mercury model when α = 90° (without motion of
epicycle; not to scale). The circles in this figure are the inner equators of fig. 8.
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version (figure 7) they are in the ratio of 2:1 32. Because Mercury is embedded in
the maintaining orb, it will oscillate on a straight line toward and away from the
center of the epicycle. Note that the line (OF) connecting the world center and
the deferent center is in the direction of the mean Sun, a point of considerable
importance to which we shall return.

Let us now turn to the parameters. For the outer planets, Ibn al-Šāṭir seems
to have adopted the Ptolemaic eccentricities e and then made the deferent radius
r2 = 3e/2 and the dirigent radius r3 = e/2 33; the ratio r2 : r3 is then 3.
For Venus, however, the ratio r2 : r3 ≈ 3.9 rather than 3 34. For Mercury,
the ratio is r2 : r3 ≈ 4.45 35. One of the consequences for Mercury is that
this results in considerably different amounts for the extremal distances. For
Ptolemy, at apogee the distance between the world center and epicycle center
is 69; at 180°, it is 57. For Ibn al-Šāṭir the corresponding distances are 65 and
55. We cannot give a satisfactory reason for these differences 36, which result in
different elongations, as we will discuss below.

Chart 2 provides a list of Ibn al-Šāṭir’s various schematic orbs (the “ inner
equators ” or non-physicalized versions) for Mercury, their sizes and their mo-
tions, and a comparison with Copernicus’ values (in both the Commentariolus
and De rev.). For Copernicus, we follow Kennedy and Roberts in designating his
orbs by vectors and norming r1 to 60. Positive values for motions of orbs are in
the sequence of the signs with respect to the apogee or epicyclic apex; negative
values are counter-sequential 37.

32 Although mathematically equivalent, the equal-circle model (presented by Copernicus in De
revolutionibus in III.4 and by Ṭūsī in his Taḥrīr al-Majisṭī ) is distinct from the 2:1 model
(used in the Commentariolus and in Ṭūsī’s Taḏkira); see also note †† in chart 2 below. The
importance of distinguishing them for understanding the historical relationship between the
various models had already been pointed to by M. di Bono, “ Copernicus, Amico, Fracastoro
and Ṭūsī’s device ”; see also Ragep, “ From Tūn to Toruń ”.

33 As explained by Kennedy and Roberts, this is so that r2 − r3 = e and r2 + r3 = 2e, the
two conditions needed to satisfy the necessary distances at apogee, perigee and quadratures
(“ The Planetary theory of Ibn al-Shāṭir ”, p. 230).

34 r2 = 1; 41 and r3 = 0; 26.
35 r2 = 4; 5 and r3 = 0; 55.
36 To quote Kennedy and Roberts (referring to Venus): “ We are at a loss to explain these new

constants ”. Kennedy and Roberts, “ The Planetary theory of Ibn al-Shāṭir ”, p. 231; their chart
on p. 230 conveniently lists the parameters for r2, r3, and r4 for all the planets. One might
speculate, as does Hartner, that Ibn al-Šāṭir is basing himself on new observations, but this
must remain speculation as long as we do not have Ta‘līq al-arṣād. Cf. Hartner, “ Ptolemy,
Azarquiel, Ibn al-Shāṭir, and Copernicus on Mercury ”, p. 24-5; repr. p. 311-12. For a recent
attempt to reconstruct Ibn al-Šāṭir’s observations for Mercury, cf. Penchèvre, “ La Nihāya
al-sūl ”, p. 492-3.

37 Cf. Kennedy and Roberts, “ The Planetary theory of Ibn al-Shāṭir ”, p. 230.
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Name of orb Ibn al-Šāṭir Copernicus (Comm.) Copernicus (De rev.)
radius; motion radius; motion radius; motion

Parecliptic 0; 38 parts N / A N / A
(r0) [thickness];

+1°/60 years
Inclined 60 parts; 60 parts; 60 parts;
(r1) +0; 59, 8, 10°/day ∗ +0; 59, 8, 11, 14°/day † +0; 59, 8, 11, 22°/day ‡

(+α) (+α) (+α)
Deferent 4; 5 parts; 4; 2, 24 parts; 4; 25 parts;
(r2) −0; 59, 8, 10°/day −0; 59, 8, 11, 14°/day fixed

(−α) (−α)
Dirigent 0; 55 parts §; 1; 20, 48 parts ¶; 1; 16 parts;
(r3) +1; 58, 16, 20°/day +1; 58, 16, 22, 28°/day +1; 58, 16, 22, 44°/day

(+2α) (+2α) (+2α)
Epicycle 22; 46 parts; 22; 33, 36 parts; 22; 35 parts
(r4) +2; 7, 16, 0°/day ‖ +4; 5°/day ∗∗ +2; 7, 16, 2, 18°/day

(κ = γ − α) (γ + α) (κ = γ − α)
Enclosing 0; 33 parts; 0; 34, 48 parts ††; 0; 34, 12 parts;
(r5) +1; 58, 16, 20°/day +1; 58, 16, 22, 28°/day +1; 58, 16, 22, 44°/day

(+2α) (+2α) (+2α)
Maintaining 0; 33 parts; 0; 34, 48 parts; 0; 34, 12 parts;
(r6) −3; 56, 32, 39°/day −3; 56, 32, 44, 56°/day −3; 56, 32, 45, 28°/day

(−4α) (−4α) (−4α)

∗ In book I, ch. 7 of Nihāyat al-su’l, the value is given as 0; 59, 8, 9, 51, 46, 57, 32, 3°. This is
the Sun’s tropical mean motion.

† This is based on the value Copernicus gives for the Sun’s sidereal year, “ 365 days, 6 hours,
and about 1/6 of an hour ”. In his copy of the 1515 Almagest, Copernicus gives the year
as 365; 15, 24, 45, which translates to a daily motion of 0; 59, 8, 11, 16, 12°; see Swerdlow,
“ The Derivation and first draft ”, p. 451-4.

‡ This is sidereal.
§ Although the value is given initially as 1/2 plus 1/3 of a degree, i. e., as 0; 50 parts, the amount

that is used later in the calculations is 0; 55 parts.
¶ This is exactly 1/3 of the deferent; Copernicus gives a slightly different value, 1; 21, 36 [0; 34

using R = 25], but this is rounded. Swerdlow more precisely derives 1; 411/4 and 0; 333/4
[R = 25] from the Uppsala manuscript; see Swerdlow, “ The Derivation and first draft ”,
p. 509.

‖ All the manuscripts have 2; 18, 14, 2°, which is incorrect.
∗∗ Because of the particular way in which Copernicus places his orbs, this is equal to the motion

of Ptolemy’s epicycle (≈ 3; 6°/day) plus the motion of center (≈ 0; 59°/day). Note that for
Ibn al-Šāṭir and for Copernicus in De rev., the orb’s own rotation is the motion of Ptolemy’s
epicycle (≈ 3; 6°/day) minus the motion of center (≈ 0; 59°/day).

†† In the Commentariolus, Copernicus describes a spherical version of the rectilinear Ṭūsī-
couple, which is what Ibn al-Šāṭir uses in the solid-sphere version of his Mercury model
(figure 7); for ease of comparison, we have transformed this for r5 and r6 into the mathemati-
cally equivalent equal-circle version of the Ṭūsī-couple (figure 9). Note that Copernicus states
that the motions of r5 and r6 are completed in a tropical year rather than a sidereal year, an-
other indication that the Commentariolus model was originally geocentric; Swerdlow, “ The
Derivation and first draft ”, p. 503, 505.

Chart 2. Comparison of Ibn al-Šāṭir’s and Copernicus’ values for Mercury.
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In figure 10, we see the complete schematic model of Mercury when α = 35°
(about 35.5 days). Note that the planet P has moved about 145° (2α+ κ) from a
fixed reference point A on the epicyclic diameter parallel to the apsidal line 38,
about 110° (α+ κ) from A0, the initial position of the epicycle apex, and about
75° (κ) from A1, the transposed position of the epicycle apex. From Ibn al-Šāṭir’s
parameters, we can calculate the sidereal period to be 87.97 days, the synodic
period to be 115.88 days, the latter the same as Ptolemy’s. Ibn al-Šāṭir differenti-
ates between what he calls the true epicycle, i. e., a reference epicycle whose size
is invariable, and an apparent epicycle, whose size is constantly changing due to
the effect of the Ṭūsī-couple, which brings the planet toward and away from the
epicycle center. (See figure T1 [appendix 2: Translation] for his illustration.)
We will have more to say about the true and apparent epicycles below.

How well does Ibn al-Šāṭir’s model replicate Ptolemy’s results, in particular
for the maximum elongations? Ibn al-Šāṭir’s maximum elongations ∆ can be
obtained from the following formula 39:

sin(∆) =
r4 − 2 · r5 · cos(2α)

[
r21 + r22 + r23 + 2 · r1 · (r2 + r3) · cos(α) + 2 · r2 · r3 · cos(2α)

]1/2 .

At the critical centrum values of 0°, 90°, and 180°, we find that Ibn al-Šāṭir’s
values are somewhat different from those of Ptolemy. Note the differences in
chart 3 40.

On the other hand, Ibn al-Šāṭir’s value for greatest maximum elongation
(23; 53, 48 at 117; 51°) is remarkably close to Ptolemy’s (23; 53, 20 at 120; 28°).
That Ibn al-Šāṭir’s greatest elongation occurs near 117; 50, whereas Ptolemy’s
is around 120; 30, is due to the equation of center (≈ 2; 40); recall that uniform
motion of center for Ptolemy is about the equant, whereas it is about the Earth for
Ibn al-Šāṭir. From the Earth, the two models would thus predict almost the same
maximum elongation at the same distance from the apogee. It would seem that
Ibn al-Šāṭir attempted to match Ptolemy’s greatest maximum elongation while
being less concerned about the values for 0°, 90°, and 180° (see chart 4). It is not

38 We ignore here the motion of the apsidal line due to the parecliptic.
39 The numerator is the apparent radius of the epicycle (the true radius modified by the cou-

ple). The denominator is the distance of the center of the epicycle from the Earth. This
latter distance formula can also be found in Hartner, “ Ptolemy, Azarquiel, Ibn al-Shāṭir, and
Copernicus on Mercury ”, p. 10; repr. p. 297.

40 These values are different from those reported by Hartner, because he took r3 = 0; 50,
whereas we are using 0;55 based on textual evidence (Hartner, “ Ptolemy, Azarquiel, Ibn
al-Shāṭir, and Copernicus on Mercury ”, p. 23; repr. p. 310); see also note § in chart 2 above.
For our calculations, we used a modern calculator; the differences using Ibn al-Šāṭir’s sine
table would be insignificant.
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A: the fixed point on the epicycle
A0: initial point of epicyclic apex
A1: transposed apex
C: epicycle center
F: deferent center
G: dirigent center
O: world center
P: planet
Q: transposed Ptolemaic equant
Y: the point on the inclined orb toward the apogee
α: motion of center
κ (= γ − α): motion of Ibn al-Šāṭir’s epicycle (equals motion of Ptolemaic
epicycle minus motion of center)

Fig. 10. Complete schematic version of Ibn al-Šāṭir’s Mercury model.
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Centrum Elongation
Ibn al-Šāṭir Ptolemy and De rev.

0 19; 28, 16 19; 03
90 23; 24, 17 23; 15
180 23; 11, 59 23; 15

Chart 3. Comparison of elongation values.

clear whether he is oblivious (or perhaps indifferent) to the discrepancies brought
about by the parameters needed to duplicate the value for 120° or whether he has
new observations for apsides and quadratures. In any event, it is clear that Ibn
al-Šāṭir has taken Ptolemy’s closest distances at 120° and 240° quite seriously
when assigning the parameters to his Mercury model. This will be an important
consideration when we compare his model and approach to that of Copernicus
in the Commentariolus and in De revolutionibus 41.

4. RELATION OF IBN AL-ŠĀṬIR’S MODELS TO THOSE OF COPERNICUS

As we stated at the outset, the most remarkable aspect of Copernicus’ Mer-
cury model in De revolutionibus is its virtual equivalence to Ibn al-Šāṭir’s and
the simple transformation needed to go from a geocentric to heliocentric version.
To see what is involved, we turn to figure 11, which is a modified version of fig-
ure 2. Ibn al-Šāṭir’s model is indicated using dashed lines (for which compare
figures 1 and 10). The De rev. version is indicated with solid lines. The transfor-
mation is effected simply by bringing the mean Sun from its position on line OF
in Ibn al-Šāṭir’s model to point F. This instantly gives us what we might call the
“ Tychonic ” version of the model. Everything is as it was in Ibn al-Šāṭir’s model
except that now the Sun moves about the Earth on circle OF counterclockwise.
To complete the transformation to the De rev. model, one simply has the Earth
move about the mean Sun on its orb / orbit FO in the counterclockwise direction.

41 It is worth mentioning here that Copernicus in De revolutionibus was somewhat more suc-
cessful in duplicating Ptolemy’s maximum elongations at 0°, 90°, and 180° as indicated in
our chart 3 (cf. Swerdlow and Neugebauer, Mathematical astronomy in Copernicus’s De rev-
olutionibus, I, 420). Since the Mercury model there is mathematically and astronomically
equivalent to Ibn al-Šāṭir’s model, we must conclude that either Ibn al-Šāṭir was unable to
figure out how to adjust his parameters to achieve equivalence with Ptolemy (which seems
unlikely), or he chose, for some reason, not to do so.
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Chart 4. Deviation of Ibn al-Šāṭir’s maximum elongations from Ptolemy’s
(x-axis is the centrum; y-axis is deviation in degrees [Ibn al-Šāṭir minus

Ptolemy]).
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Fig. 11. Transformation of Ibn al-Šāṭir’s Mercury model to the De rev. model.

Everything else remains exactly as before.
We maintain that this virtual equivalence between Ibn al-Šāṭir’s quite com-

plex Mercury model and Copernicus’ De rev. model, which also holds for Venus,
is compelling evidence that Copernicus depended on his Islamic predecessor
for his models of the inner planets. Given the straightforward transformations
needed to go from Ibn al-Šāṭir’s models for the outer planets to Copernicus’ mod-
els (outlined by Ragep in “ Ibn al-Shāṭir and Copernicus ”), we further maintain
that Copernicus’ models are all simple adaptations of Ibn al-Šāṭir’s models.

Viktor Blåsjö and Noel Swerdlow have taken issue with this claim. Blåsjö
argues that resemblances between models do not indicate proof of transmis-
sion or influence, since there are “ natural ” solutions to the problems posed by
Ptolemy’s models. Swerdlow does not deny that Copernicus had Ibn al-Šāṭir’s
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models; rather, he does not think they are sufficient to explain Copernicus’ var-
ious models nor his transition to a heliocentric cosmos. He insists instead that
Copernicus was also dependent on Regiomontanus’ alternative eccentric models.
Blåsjö’s arguments about “ naturalness ” are generally lacking in historical evi-
dence, but he does point to an illuminating mistake in Swerdlow’s understanding
of the Mercury model that will figure in our own analysis. We deal with Blåsjö’s
other arguments regarding Mercury in appendix 1. As for Swerdlow’s criticisms
of Ragep’s claims in “ Ibn al-Shāṭir and Copernicus ”, which are central to this
paper as well, we take them up in the subsequent discussion.

There is an important caveat to our argument regarding Copernicus’ simple
transformation of Ibn al-Šāṭir’s Mercury model: this only works for De revolu-
tionibus. In the earlier Commentariolus, the Mercury model exhibits a number of
differences with the De rev. model, the most important being that the mean Sun
and the center of Mercury’s orb / orbit are coincident in the earlier work. Since
we believe, like Swerdlow, that Copernicus had Ibn al-Šāṭir’s Mercury model
when writing the Commentariolus, we need to show how one might get to the lat-
ter from the former. We begin with a geocentric transformation of Ibn al-Šāṭir’s
model (figure 12), using a simplified version that dispenses with the Ṭūsī-couple.
(Thus it is similar to, but not exactly the same as, the Venus model.) In order to
show the transformation more clearly, we again make α = 35°, κ ≈ 75°, both
motions starting at A.

The transformation consists of the following steps: 1) transpose the epicycle
so that its center C is now at F; 2) transpose the double epicycle FGC along line
FF′, which is parallel and equal to CP. Note that O and P are not moved, and they
retain the same relationship as before. However, P is no longer on the epicycle.

Using vectors, we can see that we have made the following transformation,
which has preserved both distance and direction between the Earth and the planet:
−→
OF +

−→
FG +

−→
GC +

−→
CP =

−−→
OC′ +

−−→
C′F′ +

−−→
F′G′ +

−→
G′P. Using the symbols for the

radii of the orbs from chart 2, we have −→r1 +−→r2 +−→r3 +−→r4 = −→r1 +−→r4 +−→r2 +−→r3 .
It is then simple to transform this adaptation of Ibn al-Šāṭir’s geocentric model

into the heliocentric model of the Commentariolus (figure 13). Copernicus rec-
ognized the need to add a Ṭūsī-couple to vary the size of the epicycle, which has
now become Mercury’s deferent orb around the Sun. It may not be coincidental
that Copernicus follows our reconstruction, first presenting the model without
the couple (as in figure 12) and then justifying and adding the couple. In the
Commentariolus model, as well as in Ibn al-Šāṭir’s and De rev.’s models, the
purpose of the couple is to vary the size of the epicycle or Mercury’s orbit; we
will have more to say about this below. However, unlike Ibn al-Šāṭir’s model as
well as the De rev. model, the Ṭūsī-couple produces this effect in the Commen-
tariolus by bringing the center of the orb F′, rather than the planet, away from
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Fig. 12. Transformation of Ibn al-Šāṭir’s Mercury model (dotted) to the
geocentric version of the Commentariolus model.
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Fig. 13. Final transformation of Ibn al-Šāṭir’s Mercury model to the
heliocentric version in the Commentariolus.

and toward the epicycle center C′. Thus rather than −→r1 +−→r2 +−→r3 +−→r4 +−→r5 +−→r6 ,
we now have the mathematically equivalent (but astronomically different) −→r1 +
−→r4 +−→r5 +−→r6 +−→r2 +−→r3 .

There are several other things to note here. First, both for the Commentari-
olus model and especially for the De rev. model, the “ heliocentric bias ” of Ibn
al-Šāṭir’s model, whereby the Sun is on the line from the Earth to the center of
the primary deferent (the “ inclined ”), which line defines the motion of center,
greatly facilitates the transformation from geocentric to heliocentric versions of
the model. (This is discussed at length in Ragep, “ Ibn al-Shāṭir and Coperni-
cus ”.) The second thing to note is that the distinctive character of Ibn al-Šāṭir’s
double epicycle model is preserved in both the Commentariolus and De rev. And
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finally, despite the less straightforward transformation of Ibn al-Šāṭir’s model in
the Commentariolus, nothing about the transformation would have been beyond
the capabilities of Copernicus.

But then the inevitable question: if Copernicus had Ibn al-Šāṭir’s Mercury
model at the time of writing the Commentariolus, why perform the above, rather
involved transformation instead of the simple transformation that leads to the De
rev. model? Here we need to speculate a bit, but only a bit. The Commentariolus
models have several underlying conditions: 1) exactly as with Ibn al-Šāṭir, there
are no eccentrics, only epicycles and concentric orbs; 2) the mean Sun lies at
the center of the main deferent orb for each of the planets, this corresponding
to Ibn al-Šāṭir’s deferent center F (figure 10) that is on the line from the Earth
to the mean Sun. It would seem that Copernicus in the Commentariolus wanted
to follow Ibn al-Šāṭir, even if this led to serious practical difficulties, especially
with Venus and Mercury (see below). It may also be the case that Copernicus,
when writing the Commentariolus, was under the influence of the Paduan Aver-
roists and saw Ibn al-Šāṭir’s models, with their eschewing of eccentrics and the
potential of a return to single, Aristotelian center, as a way to achieve a “ quasi-
homocentricity ” 42.

5. SOME PRACTICAL PROBLEMS WITH THE COMMENTARIOLUS
MODELS AND THE TRANSITION TO THE DE REV. MODEL(S)

As mentioned above, the Mercury model in the Commentariolus is mathemat-
ically equivalent to that of Ibn al-Šāṭir and the De rev. model. But mathematical
equivalence here obfuscates a number of serious consequences to this reconfig-
uration of the model. (On the issue of “ equivalent ” models, see appendix 1.)
First of all, there is no longer an obvious “ equation of center ”, i. e., an angle de-
fined by the Earth – epicycle center – equant. Swerdlow was able to define one
(δ1) at a constructed point Q (see figure 14), but this means the equation of cen-
ter is no longer defined by the Earth / observer, an extraordinary departure from
past practice. This alone would make finding the true position of the planet quite
difficult for someone with Copernicus’ mathematical toolkit, as would finding
the elongation (δ2 − δ1) for any given centrum α, which is essential for finding
the longitude for one of the lower planets. But even more challenging would be
finding the maximum elongation of the planet for any centrum; since the planet
is no longer on a defined circle to which one could draw a tangent line, the cal-
culation involves first locating the planet with the awkward equation of center

42 Ragep, “ Ibn al-Shāṭir and Copernicus ”, p. 408-9.
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Fig. 14. The Mercury model in the Commentariolus (adapted from Swerdlow,
“ The Derivation and first draft ”, fig. 39, p. 501) ∗.

∗ Note that the mean motion α and the starting point of F are different from our figures 12
and 13.

and then rotating it through 360° to find the greatest maximum elongation for
any centrum.

But even if we grant “ mathematical equivalence ” in theory, the fact remains
that Copernicus was unable to derive parameters that would make the Commen-
tariolus model “ work ”. That Copernicus himself would have found using his
model computationally challenging is made clear from the values that it gener-
ates. For example, the maximum equation of center is considerably off from that
of Ptolemy, as also from Ibn al-Šāṭir and the De rev. model, as we see in chart 5.
The maximum elongations tell a similar, though less dramatic, tale (see chart 6).

Part of the problem in the Commentariolus is that Copernicus retains the 3:1
ratio of the deferent to dirigent epicycles from the outer planets and fails to ad-
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Ptolemy Ibn al-Šāṭir Commentariolus De revolutionibus
3; 1, 45 3; 1, 53 2; 34, 4 3; 1, 7

Chart 5. Mercury’s maximum equation of center. (It is not surprising that
Swerdlow declares the Commentariolus value to be “ absurd ”; Swerdlow, “ The

Derivation and first draft ”, p. 509.)

Ptolemy Ibn al-Šāṭir Commentariolus De revolutionibus
(at 120; 28) (at 117; 51) (at 118) (at 120; 47, 28)
23; 53, 20 23; 53, 48 23; 47, 56 23; 51, 45

Chart 6. Mercury’s maximum elongations.

just it as is done by both Ibn al-Šāṭir and the later Copernicus in De rev. 43. So
Copernicus here was either not interested or incapable of testing his parameters
(in contrast to what he does in De rev.) 44. For the equation of center this is par-
ticularly striking, since he should have been able to derive the quantity. For the
maximum elongation, we very much doubt that he or any of his contemporaries
could have derived the value without an extraordinary amount of effort. We are
thus left with a model that is deeply flawed and almost impossible to test.

When Copernicus came to work seriously on what would become De rev-
olutionibus, the inadequacies of his earlier models must have become all too
apparent, which led him to abandon his earlier attempts to exclude eccentrics
and have a single center for each planetary system. Copernicus was still work-
ing on Mercury, perhaps as late as 1539, when Rheticus arrived on the scene 45.
As Swerdlow has shown, Copernicus had first come up with a model different
from the standard De rev. model. This can be established from the text of his
holograph and its crossed-out parts, i. e., without the corrections in the margin

43 From chart 2, we find that the ratio for Mercury is 4.45 for Ibn al-Šāṭir and 3.49 for De rev.
44 Swerdlow also notes a number of calculation errors (“ The Derivation and first draft ”, p. 509).
45 N. Swerdlow, “ Copernicus’s four models of Mercury ”, in O. Gingerich and J. Dobrzycki

(ed.), Studia Copernicana XIII (Colloquia Copernicana, III): Astronomy of Copernicus and
its background: Proceedings of the joint symposium of the IAU and IUHPS, co-sponsored
by the IAHS, Torun, 1973 (Warsaw, 1975), p. 141-55 at 155 and n. 8. Based on the fact that
the “ standard ” model is described in the Narratio prima, Swerdlow concludes that it was in
place by 1539, but whether this occurred before or after Rheticus’ arrival seems to us an open
question.
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on f. 176. This original model, which Swerdlow dubs the “ deviant ” version, is
basically the same as the standard model (figure 11) but has the planet move on
the circumference of a circle rather than its diameter. In other words, Coperni-
cus uses something like the small circles employed by Ptolemy for his latitude
theory in book XIII of the Almagest rather than a Ṭūsī-couple device 46.

It is not clear why he might have been experimenting with the small circles
(perhaps he thought them simpler than the Ṭūsī-couple?) but in any event this
“ deviant ” model 47 exhibits a mostly “ correct ” transformation of Ibn al-Šāṭir’s
model. Now it is of great historical interest that Copernicus reinstated eccentric-
ities in De revolutionibus. Copernicus himself offers an explanation, at least a
partial one, by citing changes in the eccentricities of Mars and Venus since the
time of Ptolemy that have resulted from the motion of the mean Sun (i. e., the
center of the Earth’s orbit) with respect to the orbit of the center of the epicycle
carrying the planet 48. Swerdlow and Neugebauer explain Copernicus’ justifica-
tion with careful analysis, but there seems to us to be another factor that may be
at work. Could it be that Copernicus somehow realized that the Commentari-
olus model for the inner planets did not work? Once he tried to do the sort of
derivation of the parameters from Ptolemy’s observations for Venus and Mer-
cury that he does in V.21-22 and V.27, he would have discovered that he could
not obtain suitable elongations using his earlier model. For one thing, as we
have mentioned, it is exceedingly difficult to compute the elongations for the
Commentariolus models since the planets Venus and Mercury are not usually on
their circle around the Sun (i. e., r4). It thus seems plausible that once Coper-
nicus started the process of actually deriving parameters from observations, he
would have realized that he needed a new model. Such a model, namely Ibn al-
Šāṭir’s, was already at hand and quite easily transformed into the De rev. model,
which was much more amenable to computation.

6. THE REGIOMONTANUS DETOUR

In reference to our proposed transformation of Ibn al-Šāṭir’s models directly
into Copernicus’, Swerdlow has insisted that Ibn al-Šāṭir’s models are not suffi-
cient to explain the models in the Commentariolus 49. But because Ibn al-Šāṭir’s

46 Swerdlow and Neugebauer, Mathematical astronomy in Copernicus’s De revolutionibus, II,
fig. 73, p. 658.

47 The terminology is Swerdlow’s; see his “ Copernicus’s four models of Mercury ”, p. 142.
48 Swerdlow and Neugebauer, Mathematical astronomy in Copernicus’s De revolutionibus, I,

299-300; see also I, 356 sqq. (for Mars) and I, 384 sqq. (for Venus).
49 N. Swerdlow, “ Copernicus’s derivation of the heliocentric theory ”, p. 34 and passim.
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Mercury model is virtually identical to the De rev. model, and Swerdlow has
claimed that Copernicus had Ibn al-Šāṭir’s models when writing the Commen-
tariolus, and in particular the Mercury model 50, it would seem incumbent on
him to explain why Copernicus was unable or unwilling to make the simple
transformation ca. 1510 that he would make in 1543. To explore Swerdlow’s
reasoning a bit further, we have reconstructed, as best we can, the steps that he
claims Copernicus took that would eventually lead to what he calls the standard
De rev. model:

1) Copernicus first seeks to resolve the problem of irregular motion brought
on by Ptolemy’s equant (“ first anomaly ”) with the solution offered by Ibn al-
Šāṭir’s models 51; 2) he then is motivated to explore the “ second anomaly ” (i. e.,
the one related to the planet’s synodic motion) 52; 3) this leads him to transform
Ptolemy’s epicyclic models into eccentric ones, based on propositions in Re-
giomontanus’ Epitome of the Almagest 53; 4) because, geocentrically, this leads
to an unacceptable penetration of solid orbs, Copernicus is compelled to opt for
a heliocentric system 54; 5) Copernicus then incorporates Ibn al-Šāṭir’s devices
into the simple models (i. e., ones that do not deal with the first anomaly) that
he came up with in 3) and 4) 55; 6) because of the problem in the transforma-

50 “ Since [the Commentariolus’s Mercury model] is Ibn ash-Šāṭir’s model, this is further evi-
dence, and perhaps the best evidence, that Copernicus was in fact copying without full under-
standing from some other source, and this source would be an as yet unknown transmission to
the west of Ibn ash-Shāṭir’s planetary theory ”. Swerdlow, “ The Derivation and first draft ”,
p. 504.

51 “ [Copernicus’] original concern was the first, not the second, anomaly because it was in the
representation of the first anomaly that Ptolemy’s model violated the uniform and circular
motion permitted to the rotation of a sphere … My own inclination is to suspect … [that] the
identity with the earlier planetary theory [of Ibn al-Šāṭir] of Copernicus’s models for the Moon
and the first anomaly of the planets and the variation of the radius of Mercury’s orbit and the
generation of rectilinear motion by two circular motions seems too remarkable a series of
coincidences to admit the possibility of independent discovery. ” Swerdlow, “ The Derivation
and first draft ”, p. 467, 469 (italics in original; clarifying words in brackets added by current
authors).

52 “ It seems likely that in the course of the intensive study of planetary theory undertaken to
solve the problem of the first anomaly, he carried out an analysis of the second anomaly
leading to his remarkable discovery. ” Swerdlow, “ The Derivation and first draft ”, p. 425. See
also Swerdlow and Neugebauer, Mathematical astronomy in Copernicus’s De revolutionibus,
I, 56 and our comments below.

53 Swerdlow, “ The Derivation and first draft ”, p. 471-8.
54 Swerdlow, “ The Derivation and first draft ”, p. 477.
55 This is nowhere stated as such. We are led to this conclusion since Swerdlow’s entire discus-

sion of the transformation from epicyclic to eccentric models involves orbs in which the first
anomaly does not play a role. See Swerdlow, “ The Derivation and first draft ”, fig. 17-22,
p. 472-7. At some point, these “ eccentric ” models would need to be supplied with devices
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tion from geocentric eccentric to heliocentric models, Venus and Mercury have
serious deficiencies that make them similar to but significantly different from
Ibn al-Šāṭir’s models 56; 7) by the time of writing De revolutionibus, Coperni-
cus modified the Commentariolus model so that it “ worked ” computationally,
ending up with a correct heliocentric version of Ibn al-Šāṭir’s model 57.

In essence, Swerdlow is asking us to believe that Copernicus had the “ correct ”
Mercury model all along, at least the one he eventually set forth in De rev., but de-
cided not to use it, instead taking this complicated, not to say convoluted, detour.
According to Swerdlow in his original study of the Commentariolus, Coperni-
cus did not fully understand Ibn al-Šāṭir’s Mercury model 58. But as Blåsjö has
recently shown, and as we will discuss below, Swerdlow based his assessment
on a misunderstanding of what Copernicus was saying regarding the behavior of
the Mercury model.

Furthermore, Swerdlow’s suggestion that somehow the problems with the
first anomaly spurred Copernicus to explore the second anomaly is doubtful.
Here is what he and Neugebauer say about this alleged problem:

Copernicus probably undertook an investigation of the second anomaly, and of the
eccentric model, because even with the Marāgha solution to the first anomaly, the
uniform motion of the planet on the epicycle must still be measured from the mean
apogee lying on a line directed to the equant (see fig. 5.53 for Venus). Thus, techni-
cally there is still a violation of uniform circular motion, or in physical terms, of the
uniform rotation of the epicyclic sphere 59.

But this is really a non-problem as Naṣīr al-Dīn al-Ṭūsī pointed out:
the [difficulty for the Moon] that was mentioned as arising on account of the anomaly
in alignment is not present [for Mercury] because the alignment [of its epicycle di-
ameter] is toward the point with respect to which the uniformity of motion occurs 60.

Even if somehow one thought this was a problem with Ptolemy’s model, it is

to account for the individual eccentricities, equants, etc. of Ptolemy’s models.
56 “ The models in the Commentariolus were not intended for practical application – at least not

with the crude and incomplete parameters supplied in the text – and at the time of its compo-
sition Copernicus was evidently not secure in constructing a model for Mercury. ” Swerdlow
and Neugebauer, Mathematical astronomy in Copernicus’s De revolutionibus, I, 410.

57 “ He finally did reach a correct model – correct in the sense of doing what was expected of
it – in De revolutionibus … it is properly equivalent to Ibn ash-Shāṭir’s model… ” Swerdlow
and Neugebauer, Mathematical astronomy in Copernicus’s De revolutionibus, I, 410.

58 “ … he copied it without fully understanding what it was really about. ” Swerdlow, “ The
Derivation and first draft ”, p. 504.

59 Swerdlow and Neugebauer, Mathematical astronomy in Copernicus’s De revolutionibus,
I, 56.

60 Ragep, Ṭūsī’s Memoir on astronomy, I, 172. Ṭūsī generalizes this to the other 4 vacillating
planets on I, 184.
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certainly not with Ibn al-Šāṭir’s model as one can see by examining figure 7
(Ibn al-Šāṭir’s solid-orb version) and chart 2, where all the orbs are rotating uni-
formly. Would Copernicus not have understood this? This seems unlikely: the
deft way Copernicus handles the transformation of Ibn al-Šāṭir’s Mercury model
in the Commentariolus, as well as his well-advised adoption of the actual model
in De rev., bespeaks of someone quite at home with the astronomical traditions
to which he was heir. This then makes Swerdlow’s claim for Copernicus’ mo-
tivation for investigating the second anomaly, and the move toward eccentric
models, dubious at best.

Let us now turn to some specific points Swerdlow has brought up in favor of
his “ Regiomontanus detour ” 61. At the base of his entire reconstruction, the
only concrete evidence he has, is the claim that eccentricitas in the Uppsala
notes refers to the radius of the eccentric in the transformation of the epicycles
in Ptolemy’s planetary models. After listing the values for the eccentricitas of
Mars, Jupiter, Saturn, and Mercury, Swerdlow has this to say:

These numbers directly give the proportion of the radius of the epicycle to the radius
of the eccentric where the radius of the eccentric is 10000. Copernicus, however,
calls the number for each planet an eccentricitas. The substitution of an eccentricity
for the epicyclic radius can refer only to the eccentric model for the second anomaly
mentioned briefly by Ptolemy in Almagest XII, 1 (Manitius 2, 268-269); it is this
alternate model that leads directly to the heliocentric theory 62.

The consistent use of 10000 in the alternative models is what one would ex-
pect if Swerdlow’s reconstruction were correct. But in fact, this is only true for
Mars, Jupiter, and Saturn. For Mercury, the listed eccentricitas value in the Up-
psala notes is 2250 (later changed to 2256) indicating a radius of 6000. It is true
that in the margin one finds 376, but this is not labeled as “ the ” eccentricitas
and in any case is based on a radius of 1000, not 10000. If Copernicus is de-
veloping alternative eccentric models, why would he use different radii for his
norms? Indeed later, when discussing Mercury, Swerdlow recognizes this and
then gives an alternative explanation, saying that “ Copernicus was using sine ta-
bles normed to a radius of 6000 or 60000 … It is possible that Copernicus used
sines normed to 60000 for all the planets, and then divided by 6 to produce the
numbers in U ” 63. All this is odd and, to us, unconvincing. Why would Coperni-
cus change norms if he is consistently transforming Ptolemy’s epicycle models

61 For a recent summary of Swerdlow’s position, see his “ Copernicus’s derivation of the helio-
centric theory ”. For an alternative to Swerdlow’s reconstruction and a re-evaluation of the
critical Uppsala notes, see Ragep, “ Ibn al-Shāṭir and Copernicus ”, which contains a fuller
exposition of the following.

62 Swerdlow, “ The Derivation and first draft ”, p. 471.
63 Swerdlow, “ The Derivation and first draft ”, p. 505.

36



233The Mercury Models of Ibn al-Šāṭir and Copernicus

to eccentric ones? It is much more plausible to see the numbers listed with the
label eccentricitas simply as part of a series of steps in the heliocentric transfor-
mation of Ibn al-Šāṭir’s models. This is most clearly illustrated with Mercury’s
parameters in the upper part of the Uppsala notes. It would appear that Coper-
nicus, for the eccentricitas, originally wrote 2250, which is Ptolemy’s epicycle
radius normed to 6000 (or 60000 / 10 if we were to accept that the “ original ”
number was 60000). But at some point, Copernicus changed the 0 of 2250 to a
6, which is consistent with the 376 (2256 / 6) in the margin. The explanation for
this is provided by Swerdlow in his derivation of what Copernicus called the di-
versitas diametrj, which is the displacement resulting from the Ṭūsī-couple. As
Swerdlow shows, this displacement, given as 1151 in the Uppsala notes, comes
from a mean epicycle radius of 22560 64. It would seem that Copernicus origi-
nally took Ptolemy’s radius of 2250 and then changed it so it would be consistent
with the diversitas diametrj of 1151. This slight modification of the eccentrici-
tas, though mathematically insignificant, does, we think, provide a window for
understanding Copernicus’ use of eccentricitas as well as his procedures in the
Uppsala notes. Our suggestion is that eccentricitas simply meant the eccentric-
ity, or off-centeredness from the mean Sun, of either the Earth (for the outer
planets) or the main deferent (r4) of the planet itself (for the inner planets) af-
ter the transformation of Ibn al-Šāṭir’s models into their heliocentric versions
in the Commentariolus. For both the outer and inner planets, the values for the
eccentricitas in the upper part of the Uppsala notes are equivalent to the radii of
Ptolemy’s epicycles (except for the slightly revised value for Mercury). We can
see what this looks like for the outer planets in figure 15.

Taking Mars as our example, we find in the Uppsala notes that the Ptolemaic
epicycle of 39.5 (or 3950 with a deferent radius OF of 6000) has been changed
to 6583, normed to 10000. This now, in our reconstruction, represents the ra-
dius of the Earth’s “ orbit ” around the Sun in figure 15. In the instructional note
separating the upper and lower parts of the Uppsala notes, Copernicus writes:
“ proportio orbium celestium ad eccentricitatem 25 partium ” (the proportion
of the celestial orb to an eccentricity of 25 parts). In other words, Coperni-
cus wishes to provide a unified “ solar system ” based on an eccentricitas of 25,
which is the Earth-Sun distance in the unified system, that then allows for a sim-
ple calculation of the “ semidyameter orbis ”, or radius ⊙′F of the celestial orb
for each planet. For the outer planets, this is straightforward: in the case of Mars,

64 Swerdlow, “ The Derivation and first draft ”, p. 508.
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Fig. 15. Transformation of Ibn al-Šāṭir’s models for the outer planets into the
Commentariolus models (primed letters / symbols indicate location after the

transformation).
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we have r4 : 25 = 10000 : r1 ⇒ 6583 : 25 = 10000 : ⊙′F ⇒ ⊙′F ≈ 38 (as in
the lower part of the Uppsala notes)65.

For Mercury and Venus, however, the situation is less straightforward, and
the designation of eccentricitas in the case of Mercury could be an indication of
Regiomontanus’ eccentric model, inasmuch as it definitely does not indicate the
Earth-Sun distance in the Commentariolus version. For the eccentricitas of 2256
in the upper part of the Uppsala notes is r4 in our figure 13, while the eccentric-
itas of 25 in the instructional note is represented by r1. So rather than a ratio of
2256:25 or 376:25, analogous to what we used for Mars, we need the following
proportion to reach Mercury’s semidyameter orbis: r1 : 25 = r4 : ⊙′F′ ⇒
1000 : 25 = 376 : ⊙′F′ ⇒ ⊙′F′ = 9; 24. Now this may seem to count against
our interpretation, since one could argue, as does Swerdlow, that despite the ec-
centricitates indicating different radii in our diagrams (r1 for the upper planets,
r4 for the lower), in all cases eccentricitas would be an appropriate moniker for
each of the eccentricities of Regiomontanus’ eccentric models, whether for the
upper or lower planets. But to emphasize our earlier point, since Copernicus
is not consistent in his norms in the upper part of the Uppsala notes nor in the
way he is using eccentricitas (as some version of a transformed epicycle in the
upper part, as the Earth-Sun distance in the instructional note), we think “ off-
centeredness from the mean Sun ” fits the term and is compatible with his usage
throughout the notes.

Moreover there are other reasons for considering both the Uppsala notes and
the Commentariolus as strongly suggesting that Ibn al-Šāṭir’s models are the
sole basis for Copernicus’ longitudinal models in the Commentariolus 66. Here
we concentrate on Mercury. Swerdlow states in his study of the Commentariolus
that “ The statement [by Copernicus] that Mercury ‘appears’ to move in a smaller
orbit when the earth is in the apsidal line and in a larger orbit when the earth is
90° from the apsidal line is utter nonsense as a description of the apparent motion
of Mercury ” 67. He goes on to make the following, striking assertions:

65 A. Goddu has asserted that “ Ragep claims that the eccentricitas for each planet is the Earth –
mean Sun distance and, hence, 10000 (or 1000 in the case of Mercury) is the eccentricitas
for each planet. ” (“ Birkenmajer’s Copernicus: Historical context, original insights, and con-
tributions to current debates”, Science in context, 31 (2018): 189-222 at 210.) But clearly
Goddu did not understand Ragep’s argument in “ Ibn al-Shāṭir and Copernicus ”, repeated
here, where 6583 is explicitly given as the eccentricitas for Mars. His other comments re-
garding the ultimate origin of Copernicus’ numbers for the eccentricitates in U (the Alfonsine
tables) and the use of the genitive (eccentricitas martis 6583) are not particularly relevant to
the discussion. The latter point ignores the fact that a Latin genitive (as in other languages)
can be used in different ways; thus, it could just as well mean “ the eccentricity of Mars is
6583 ” as “ the eccentricity for Mars is 6583 ”, i. e., in the case of Mars’ planetary model.

66 Some of the following repeats points made in Ragep, “ Ibn al-Shāṭir and Copernicus ”.
67 Swerdlow, “ The Derivation and first draft ”, p. 504.
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This misunderstanding must mean that Copernicus did not know the relation of the
model to Mercury’s apparent motion. Thus it could hardly be his own invention for,
if it were, he would certainly have described its fundamental purpose rather than
write the absurd statement that Mercury “ appears ” to move in a larger orbit when
the earth is 90° from the apsidal line. The only alternative, therefore, is that he copied
it without fully understanding what it was really about. Since it is Ibn ash-Shāṭir’s
model, this is further evidence, and perhaps the best evidence, that Copernicus was
in fact copying without full understanding from some other source, and this source
would be an as yet unknown transmission to the west of Ibn ash-Shāṭir’s planetary
theory 68.

While we concur that this is Ibn al-Šāṭir’s Mercury model, which, as stated
above, leads to unacknowledged problems with Swerdlow’s analysis, we do not
agree that Copernicus did not understand the model. Part of Swerdlow’s argu-
ment is that “ Copernicus apparently does not realize that the model was de-
signed, not to give Mercury a larger orbit (read epicycle) when the earth (read
center of the epicycle) is 90° from the apsidal line, but to produce the greatest
elongations when the earth (center of the epicycle) is ±120° from the aphelion
(apogee) 69 ”. But as Blåsjö has pointed out, there is a plausible way to read what
Copernicus is saying that shows he was aware that the simple double-epicycle
model (see our figure 12) would not work for Mercury without an adjustment,
i. e., the introduction of the Ṭūsī-couple device. Nevertheless, it is curious that
Copernicus only refers to the situation with reference to the apsis and quadratures
and not at ±120° as in the Almagest and also in De revolutionibus. Blåsjö thinks
that it was not necessary for Copernicus to mention the maximum elongations at
the trines “ since his intended readership would of course be very familiar with
Ptolemaic theory and realize at once that this corollary carries over directly in-
sofar as the two theories are equivalent 70 ”. But as we will argue in appendix 1,
it is highly unlikely that Copernicus’ “ intended readership ”, or anyone else for
that matter, would have seen the greatest elongations at the trines as somehow
a “ corollary ” to the effect of the Ṭūsī-couple. Blåsjö also wishes us to believe
that by showing that Swerdlow misunderstood what Copernicus was saying, this
somehow disproves Swerdlow’s conclusion that Copernicus was copying Ibn al-
Šāṭir’s model. Although this is an unwarranted leap on Blåsjö’s part, his analysis
does provide a key to showing an even stronger connection between Ibn al-Šāṭir
and Copernicus.

Indeed, given the overwhelming evidence of the similarities, and in several
cases the virtual identity, of Copernicus’ and Ibn al-Šāṭir’s models, we are led to

68 Swerdlow, “ The Derivation and first draft ”, p. 504.
69 Ibid.
70 Blåsjö, “ A critique of the arguments for Maragha influence on Copernicus ”, p. 193.
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conclude that Copernicus knew of his predecessor’s models in some form. But
in which form? Because Copernicus does not use Ibn al-Šāṭir’s parameters, and
in fact makes some ill-advised choices, we think it much more likely that he had
diagrams but not Ibn al-Šāṭir’s text. The case of the variable size of the circum-
ference of Mercury’s orbit is revealing. Looking at the “ schematic ” diagram in
Ibn al-Šāṭir’s Nihāyat al-su’l (figure T1 in the translation, appendix 2), one is
struck by how perfectly it depicts what Copernicus describes. In his diagram,
Ibn al-Šāṭir has shown both the “ apparent epicycle orb ” on which is the planet
and the “ true epicycle orb ”, which is the “ reference ” epicycle orb without the
effect of the Ṭūsī-couple. (See also figure 10 above.) Even though Ibn al-Šāṭir,
as we have seen, was aware of the importance of the nearest distances occurring
at the trines 71, he did not feel the need to indicate this on his diagram; his pur-
pose was to show the effect of the Ṭūsī-couple on the model, which causes the
epicycle to “ shrink ” at 0° and 180°, and “ expand ” at 90° and 270°. Bearing
this in mind, and with a view to Ibn al-Šāṭir’s diagram, let us quote Copernicus:

But this combination of circles, although adequate to the other planets, is not ad-
equate to Mercury because, when the Earth is in the views of the apsis mentioned
above [i.e, at 0° and 180°], the planet appears to move by traversing a far smaller
circumference, and on the other hand, when the Earth is at quadratures [to the apsis],
[i.e., at 90° and 270°], by traversing a far larger circumference than the proportion
of the circles just given permits. Since, however, no other anomaly in longitude is
seen to arise from this, it seems suitable that it take place on account of some kind of
approach [toward] and withdrawal from the center of the sphere on a straight line 72.

It would seem that Copernicus was following Ibn al-Šāṭir to a “ + ”.
Ibn al-Šāṭir’s diagram also helps explain another, heretofore puzzling aspect

of the Uppsala notes 73. In the upper part of the Uppsala notes for Mercury,
Copernicus writes 6 or 600 for r1 + r2. However, the “ ecce ” of 2256 (or 376)
in conjunction with the 115.1 (or 19) for the diversitas diametrj, the displace-
ment resulting from the Ṭūsī couple, implies r1 + r2 = 576 74. But Copernicus
uses 540 to derive the values in the lower part of U, i. e., r1 = 1; 41 1/4 and
r2 = 0; 33 3/4. Regarding this, Swerdlow says: “ I do not know why Copernicus
had these problems 75 ”. However, looking again at fig. T1, we can conjecture

71 See the above discussion of Ibn al-Šāṭir’s values for the maximum elongations, which are
remarkably close to Ptolemy’s near 120°.

72 Swerdlow, “ The Derivation and first draft ”, p. 503 (Swerdlow’s translation; italics are from
the current authors).

73 The following is taken from Ragep, “ Ibn al-Shāṭir and Copernicus ”.
74 Swerdlow, “ The Derivation and first draft ”, p. 507, where he derives 576(0). As he notes

(p. 508-9), Copernicus seems to have had considerable problems in converting from the upper
value in U for r1 + r2 to the values for the two epicycles in the lower part.

75 Swerdlow, “ The Derivation and first draft ”, p. 509.
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that Copernicus reasoned (incorrectly) as follows: the largest size of the epicy-
cle (“ apparent epicycle orb ”) is 2256 + 115.1 = 2371.1 at 90°. Its smallest
size (“ apparent epicycle orb ”) is 2256 − 115.1 = 2140.9 at 0°. But rather
than taking the radius of the “ true epicycle orb ”, i. e., 2256 (or 376), he adopted
the “ apparent epicycle orb ” at α = 0° as his reference epicycle, since it is
the starting point. If we take the maximum equation to occur at 90°, then the
Ptolemaic eccentricity of 6 (or 600) should be measured there with the epicy-
cle being 2371.1. But at α = 0°, the ratio of the two “ apparent ” epicycles is
2140.9/2371.1 ≈ 0.9. So the sum of the eccentricities (r1 + r2) should be pro-
portionally lowered, at least according to this reasoning, i. e., 0.9×600 = 540 76.
Along with Copernicus’ description of a varying planetary “ circumference ”
(epicycle in Ibn al-Šāṭir’s model) and the explanation for 540 arising from the
diagram, we would argue that Copernicus had at his disposal something like
fig. A1 / T1. This is the sense in which we can say that Copernicus had Ibn al-
Šāṭir’s Mercury model when composing the Commentariolus and later De rev.

7. CONCLUSION

The remarkable similarity between Ibn al-Šāṭir’s Mercury model and that in
De rev. should long ago have settled the question of whether Copernicus was
dependent on his Islamic predecessor. Although Swerdlow has championed a
connection between Islamic astronomy and Copernicus, his interjection of a Re-
giomontanus detour has, we believe, considerably muddied the waters and inhib-
ited the simple conclusion that Copernicus built his system almost exclusively on
the foundation of Ibn al-Šāṭir’s models. Blåsjö’s arguments for Copernicus’ inde-
pendence from Islamic influence, based on the elusive concept of “ naturalness ”,
would have very different models be classified as equivalent (see appendix 1).
As argued elsewhere, Ibn al-Šāṭir’s models are fundamentally different not only
from those of Ptolemy but also from his “ Marāgha ” predecessors 77. Because of
the “ heliocentric bias ” brought about by a rejection of eccentrics and by making
the Earth the actual center of motion, Ibn al-Šāṭir’s models considerably facili-
tated Copernicus’ transition from an Earth-centered to a Sun-centered cosmol-
ogy. There was a wide array of non-Ptolemaic Mercury models that were devel-
oped after Naṣīr al-Dīn al-Ṭūsī admitted that this complex model had defeated
him 78: Quṭb al-Dīn al-Šīrāzī claims to have invented nine different Mercury

76 This also works, of course, if one uses 376 and 19 instead of 2256 and 115.1.
77 Ragep, “ Ibn al-Shāṭir and Copernicus ”, p. 396-7, 408.
78 Ragep, Ṭūsī’s Memoir on astronomy, I, 208.
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models 79, and Khafrī presents four in his supercommentary on Ṭūsī’s Taḏkira 80.
We should also not forget Biṭrūjī’s neo-Aristotelian model as well as other ho-
mocentric models inspired by him 81, and, of course, Copernicus might have well
begun thinking about Mercury when he first encountered Peurbach, as Michela
Malpangotto has suggested 82. There was and is nothing “ natural ” about any
of these models. If anything, they show a remarkable range of human ingenu-
ity. Copernicus did not come up with Ibn al-Šāṭir’s models because they were
“ natural ”. But that he chose them was part of his remarkable genius.
Acknowledgements. We are indebted to Robert Morrison for his insightful comments
on earlier drafts of this paper. Sally Ragep has read and revised multiple versions (far
too many to recall), and we are grateful for her incisive critiques and unmatched edi-
torial skills. We wish to thank an anonymous reviewer, who gave this paper a careful
read and made a number of helpful suggestions. All remaining shortcomings are the
responsibility of the authors.

APPENDIX 1
THE ISSUE OF EQUIVALENCE AND “ NATURAL ” SOLUTIONS

V. Blåsjö has claimed that “ the technical similarities [between Copernicus’
models and those of his Islamic predecessors] … are all natural consequences
of natural principles, making independent discovery perfectly plausible 83 ”. As
mentioned previously, the notion of “ natural ” solutions is problematic; there is
no “ natural ” solution to the equant problem (or to any of the other difficulties
related to Ptolemaic astronomy) as evidenced by the myriad solutions that were
put forth. Indeed, Ibn al-Šāṭir’s solution is highly individualistic and is quite
different from those of both his predecessors (such as Quṭb al-Dīn al-Šīrāzī) and
successors (such as ‘Alī Qushjī) 84. His Mercury model in particular is quite
distinct, as we have endeavored to show, and its virtual identity with the De rev.
model is not something that can be dismissed as a “ natural ” outcome. And

79 Quṭb al-Dīn al-Šīrāzī, Fa‘alta fa-lā talum, Majlis-i šūrā ms. 3944, f. 7b. For an analysis
of some of these models, see Amir-Mohammad Gamini, “ Quṭb al-Dīn al-Shīrāzī and the
development of non-Ptolemaic planetary modeling in the 13th century ”, Arabic sciences and
philosophy, 27/2 (2017): 165-203.

80 G. Saliba, “ A sixteenth-century Arabic critique of Ptolemaic astronomy: The work of Shams
al-Dīn al-Khafrī ”, Journal for the history of astronomy, 25/1 (1994): 15-38.

81 B. R. Goldstein (ed. and transl.), Al-Biṭrūjī: On the principles of astronomy, 2 vol. (New
Haven, CT, 1971), I, 140-2, II, 375-85.

82 Malpangotto, “ L’univers auquel s’est confronté Copernic ”.
83 Blåsjö, “ A critique of the arguments for Maragha influence on Copernicus ”, p. 183.
84 On this point, see Saliba, “ A sixteenth-century Arabic critique of Ptolemaic astronomy ”.
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Copernicus himself over his lifetime came up with different models for Mercury
(four according to Swerdlow); which of these is supposed to count as “ natural ”?

Part of the problem with Blåsjö’s approach is that he is far too willing to dis-
miss differences between models as irrelevant, especially physical differences,
as long as there is what he takes to be mathematical equivalence. But Blåsjö’s
reductionism leads to a number of untoward conclusions, not least because his
notion of mathematical equivalence is itself problematic. To explore this a bit
further, let us turn to his claims regarding the nearest distance issue for Mer-
cury. As we have seen, Swerdlow takes Copernicus’ silence on the matter in the
Commentariolus to mean that he did not fully understand his own model. In re-
sponse, Blåsjö uses his notion of “ equivalence ” to assert that “ There is no need
for Copernicus to mention this since his intended readership would of course be
very familiar with Ptolemaic theory and realize at once that this corollary car-
ries over directly insofar as the two theories [that of Ptolemy and Copernicus] are
equivalent 85 ”. Setting aside the dubious notion of an “ intended readership ” in
1510 that would be experts on one of the most difficult problems of Ptolemaic
astronomy, it is clear from our above discussion of maximum elongation and
the equation of center that it is simply wrong to claim that the Commentariolus
model is equivalent to those of Ptolemy, Ibn al-Šāṭir, and De rev., if one means
by “ equivalent ” that they can produce equivalent results. One might be able
to somehow adjust the parameters in the Commentariolus to reach results that
would be closer to those of the other models, but Copernicus clearly did not do
this. Nor is it at all likely that he tested the Commentariolus model to see if it
was equivalent. The fact that the value for the equation of center is so far off is
a clear indication of this (chart 5 above).

In short, the fact that the Mercury model in the Commentariolus was not
only impractical but also exceedingly difficult to test undermines Blåsjö’s claim
that finding the maximum elongations at 0, ±90, and 180° “ eliminates the need
for Copernicus to address the issue ” of maximal elongation at ±120°, since
somehow this latter is a corollary of the former. Furthermore, this requires us to
believe that Copernicus understood this property of Ptolemy’s model, something
that is certainly not self-evident inasmuch as there is some doubt that Copernicus
even had a copy of the Almagest when he wrote the Commentariolus 86.

Let us turn to the question of whether Blåsjö might nevertheless be correct
in asserting that the maximal elongations at ±120° are somehow “ a corollary ”
that are only derived after the model has been determined by observations for
the 0°, ±90°, 180° cases that Ptolemy brings forth. Mathematically speaking,

85 Blåsjö, “ A critique of the arguments for Maragha influence on Copernicus ”, p. 193.
86 Swerdlow, “ The Derivation and first draft ”, p. 426.
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there is some truth to this: since the shape of the curve described by C in figure 6
above is an oval, rather close to an ellipse 87, it would naturally follow that once
one has the major and minor axes the other positions fall into place. But this
bit of anachronistic reasoning has little bearing on the way in which Ptolemy
most likely proceeded; for even after fixing his parameters using observations
at 0°, ±90°, 180°, he still had to confirm that the model actually predicted the
observations for ±120°. That it does is hardly a “ corollary ”; indeed, Swerdlow
has convincingly argued that it was neither mathematical necessity nor observa-
tional precision that results in the model being in accord with the observations
at ±120°. Rather, the model itself most likely was constructed to account for
observations that seemed to show (erroneously as it turned out) that elongations
at±120° were greater than those at 180°. Swerdlow is then led to conclude “ that
some, perhaps most [of the observations], were [then altered] ” to take into ac-
count the theoretical model with its two perigees 88. It is unlikely that anyone
before Swerdlow (other than Ptolemy himself) understood this, at least not in
the analytical detail that Swerdlow brings to the task. So the original motivation
for Ptolemy’s model, and alleged curve-fitting, does not in itself count against
Blåsjö’s speculation about why Copernicus does not feel the need to explain that
his model in the Commentariolus accounts for Ptolemy’s reported elongations
at the trines. It is at least conceivable that he had analyzed the model in the
Almagest and understood that fixing the parameters for 0°, ±90°, 180° would
achieve his desired result. But this is doubtful for several reasons. For one,
almost everyone before Copernicus who had any understanding of the model
did remark on the two perigees and understood that this was fundamental to the
model 89. That Copernicus does not do so is thus odd. Furthermore, for us to

87 W. Hartner, “ The Mercury horoscope of Marcantonio Michel of Venice: A study in the his-
tory of Renaissance astrology and astronomy ”, Vistas in astronomy, 1 (1955): 84-138 at
109-22, reprinted in W. Hartner, Oriens-Occidens, I, 440-95 at 465-78.

88 Swerdlow, “ Ptolemy’s theory of the inferior planets ”, p. 51-4 (quotation is on p. 54). This
brief summary can hardly do justice to Swerdlow’s incisive and compelling explanation of
Ptolemy’s Mercury model and its origins. Although hardly conclusive, it is noteworthy that
Ptolemy presents the observations establishing the need for two perigees (IX.8) before de-
riving the distances between the centers and the radius of the small circle (IX.9). Once he
has the parameters, he then “ proves ” that the model will produce the needed two perigees, a
result that Swerdlow remarks may seem like “ luck ” but is much more likely a consequence
of “ adjusting ” the observations and model in advance [G. J. Toomer (transl.), Ptolemy’s Al-
magest (London, 1984), p. 453-60].

89 This is quite explicit, for example, in Ṭūsī’s Taḏkira (Ragep, Ṭūsī’s Memoir on astronomy,
I, 168-9 and 176-7 [fig. T9]), a work well known to Ibn al-Šāṭir. Because Ibn al-Šāṭir is so
familiar with his predecessors (including Ṭūsī), he evidently does not feel the need to discuss
the two perigees in his chapter on Mercury (see appendices 2-3); however, he does indicate
that he is aware of Ptolemy’s Mercury model having the perigees at points other than 180°
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accept that Copernicus could consider the perigees at ±120° a corollary, one
would need to show that he had sufficient understanding of Ptolemy’s model so
that his own could replicate its parameters and output. But as we have seen,
this is far from the case, at least at the time of the composition of the Com-
mentariolus. Thus to believe Blåsjö’s main contention, one needs to assume
that Copernicus when writing the Commentariolus: a) would not mention the
most prominent aspect of Mercury’s model because this was a “ corollary ” to
Ptolemy’s “ equivalent ” model; and also assume, b) that Copernicus would put
forth a model that did not produce equivalent results. Needless to say, we find
this untenable. On the other hand, by the time he composed De revolutionibus,
Copernicus not only does not ignore the perigees at ±120°, he in fact adjusts the
parameters of the model to account for them (something obviously not done in
the Commentariolus) and achieves a result fairly close to Ptolemy’s 90. But this
was done many years later and has no bearing on Blåsjö’s contention, which is
focused on the earlier Commentariolus.

APPENDIX 2 (TRANSLATION)
IBN AL-ŠĀṬIR’S NIHĀYAT AL-SU’L, BOOK I, CHAPTER 21

On the configuration of the orbs of Mercury
according to our procedure in conformity with observation

We conceive of an orb in the plane of the zodiacal orb and on its two poles and
its center; it is called the parecliptic. We conceive of a second orb whose plane
is inclined from the plane of the parecliptic one-half plus one-quarter degree at
the apogee in the southern direction. This inclination is not fixed; according to
[another] opinion, which is more correct, it is inclined 1/6 degree and is of fixed
inclination 91. The plane of the inclined [orb] intersects the plane of the pareclip-
tic at two facing points, one of which is called the head and the other the tail. We
conceive of a third orb whose center is on the equator of the inclined [orb], its
radius being 4 parts, 5 minutes using parts by which the radius of the inclined is
60 parts; it is called the deferent. We conceive of a fourth orb whose center is on
the deferent equator, its radius being 1/2 plus 1/3 of a degree [sic] 92; it is called

in his introductory remarks in Nihāyat al-su’l, which deal with difficulties of the Ptolemaic
models (Oxford, Bodleian, Marsh ms. 139, f. 3b and Penchèvre, “ La Nihāya al-sūl ”, p. 40-1).

90 See above and Swerdlow and Neugebauer, Mathematical astronomy in Copernicus’s De rev-
olutionibus, I, 422-4.

91 Both opinions, as it turns out, are due to Ptolemy: the variable inclination of the inclined orb
is presented in the Almagest; a fixed inclination of 1/6 degree is in the Planetary hypotheses.
See Neugebauer, A history of ancient mathematical astronomy, II, 909.

92 Later the value that is used is 55 minutes.
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the dirigent. We conceive of a fifth orb whose center is on the dirigent equator,
its radius being 22 parts, 46 minutes of those parts; it is called the epicycle orb.
We conceive of a sixth orb whose center is on the epicycle equator, its radius be-
ing 33 minutes; it is called the enclosing [orb] 93. We conceive of a seventh orb
whose center is on [the equator of] the enclosing [orb], its radius being equal to
the radius of the enclosing [orb], namely 33 minutes; it is called the maintaining
[orb] and Mercury is embedded on the equator of this orb.

As for the motions: the parecliptic moves on the two ecliptic poles sequen-
tially, one degree every sixty years, this being the same as the motion of the
apogees 94. The inclined moves sequentially equal to Mercury’s motion of cen-
ter, which is equal to the Sun’s [motion] of center. It is in a nychthemeron
0; 59, 8, 10. As for the deferent, it moves counter-sequentially in its uppermost
part, this also being equal to Mercury’s motion of center 95. As for the epicycle
orb, it moves sequentially in its uppermost part in the amount of the excess of
Mercury’s proper motion over its motion of center, it being in a nychthemeron
2; 18, 14, 2 96; it is a simple motion.

As for Mercury’s proper motion, it is a simple motion that is compound be-
cause it is in the amount of the motion of this epicycle, which is 2; 18, 14, 2
plus the motion of Mercury’s center, which is 0; 59, 8, 10. This is [simple?]
because the two motions are in the same direction, so the separation of the
planet from the apex is in the amount of the sum of the two motions, namely
3; 6, 24, 10, 1, 38, 37, 28, 42, which is the compounded proper motion of Mer-
cury, and it is uniform with respect to the epicycle center.

What will clarify this further is that when the inclined moves a quarter revo-
lution, and the deferent moves a quarter revolution, and the dirigent moves a half
revolution, the apex, which is the starting point of its proper motion, will shift
a quarter revolution sequentially. However, by observation it is found to shift
sequentially equal to the proper motion of Mercury, namely 3; 6, 24, 10. Thus
the motion of the epicycle about its center sequentially is in the amount of the
excess of this proper [motion] over the motion of center, since they are both in
the same direction. This has thus been clarified 97.

93 MS L adds “ and the containing [shāmil] ”. This term is used later in this chapter for the
enclosing orb.

94 Note that Ibn al-Šāṭir differentiates the motion of the apogees from the precessional motion.
See note 31.

95 The following is implied from what follows but is missing in all the manuscripts: <The diri-
gent moves sequentially in its uppermost part, this being equal to twice Mercury’s motion of
center.>

96 3; 6, 24, 10, 1, 38, 37, 28, 42° − 0; 59, 8, 10° = 2; 7, 16, 0°, not 2; 18, 14, 2°. We do not
know the source of this error, but it is attested in all the manuscripts. Note that it is repeated
in the following paragraph.

97 For further clarification, see above, figure 9 and the accompanying explanation.
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As for the enclosing [orb], it moves sequentially in its uppermost part equal
to twice Mercury’s motion of center, which is daily 1; 58, 16, 20. As for the
maintaining [orb], it moves counter-sequentially in its uppermost part 4 times
Mercury’s motion of center, which is daily 3; 56, 32, 39.

So Mercury remains on the line extending from the epicycle center to the
center of the enclosing [orb], approaching and moving away from the epicycle
center, it being on the line and not departing from it. When the epicycle center
is at the apogee or perigee, Mercury will be at its nearest distance to its epicycle
center; this nearest [distance] is called the epicycle’s apparent radius, and it is
21 1/3 parts 98. And when the center is three signs [away], Mercury will be at
its farthest distance from the center of the epicycle, namely 23°52′ 99. Thus the
farthest distance of Mercury from the center of the world is 86 2/3 100 and its
nearest [distance] 33 1/3 101; however, Mercury does not come near the nearest
distance of its solid orbs, according to what we have explained before in another
venue 102.

As for the sizes of the solid orbs: the radius of the deferent sphere is 28; 52 103;
the radius of the dirigent sphere is 24; 47 104; the radius of the epicycle sphere is
23; 52 105; the radius of the enclosing sphere is 1; 6; and the radius of the main-
taining sphere is 0; 33. All are with parts whereby the radius of the parecliptic
is 60 parts. So the farthest distance of the parecliptic is 88 [parts] and 52 min-
utes 106. Above that is the thickness of the parecliptic; let us assume it to be fully
complete at 89; 30. And the nearest [distance] of its orbs is 31; 8 107 but it is less
than that due to the conjunction of the orb, so we assume it to be 31; 0. 108 And
God is all-knowing.

98 This should be 212/3: 22; 46− 1; 6 = 21; 40p.
99 22; 46 + 1; 6 = 23; 52p.

100 60 + 4; 5 + 0; 55 + 21; 40 = 86; 40p.
101 60− (4; 5 + 0; 55 + 21; 40) = 33; 20p.
102 With reference to figure 6, one can see that the planet never reaches the “ nearest distance ”

of the solid orbs, which is the point of tangency between the deferent and the concave surface
of the inclined orb. “ Another venue / place ” probably refers to another work.

103 0; 33 + 0; 33 + 22; 46 + 0; 55 + 4; 05 = 28; 52.
104 0; 33 + 0; 33 + 22; 46 + 0; 55 = 24; 47.
105 0; 33 + 0; 33 + 22; 46 = 23; 52.
106 60 + 28; 52 = 88; 52.
107 60− 28; 52 = 31; 8.
108 This notion of conjunction [ittiṣāl] seems to be peculiar to Ibn al-Šāṭir. The idea is that the

orb on which is the nearest distance (in this case the inclined) needs extra thickness. Thus the
“ nearest distance ” will be less than what has been calculated thus far. He also applies this
for the other planets, explaining it first for Saturn at the end of chapter 12, where he calls it
iḫlāṭ rather than ittiṣāl. There is also a scholium [tanbīh] at the end of chapter 19 on Venus
that explains how to transform the schematic circles into solid orbs that gives instructions for
adding the ittiṣāl.
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[Fig. T1.] This is the illustration of the orbs of Mercury according to which the
centers of the complete spheres are as pictured in a plane for the apogee, the

perigee and the mean distances.
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[Fig. T2.] This is the illustration of Mercury’s solid orbs, which are complete
spheres, as pictured in a plane for the apogee, the perigee and the mean

distances.
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APPENDIX 3 (ARABIC TEXT)

Manuscripts used and sigla 109

B :(ب) Oxford, Bodleian, Marsh ms. 290 [f. 29a, line 7 – f. 30a, line 3]
H :(ح) Oxford, Bodleian, Huntington ms. 547 [f. 40b, line 8 – f. 41b, line 4]
D :(د) Oxford, Bodleian, Marsh ms. 501 [f. 30b, line 4 – f. 31b, line 1]
S :(س) Tehran, Sipahsalar ms. 598 [page 38, line 7 – page 40, line 4]; copy

date: 935/1528
F :(ف) Jerusalem, Khālidiyya ms. 992 [f. 26b, line 5 – f. 27b, line 12]
Q :(ق) Istanbul, Süleymaniye, Kadızade Mehmed Ef. ms. 339 [f. 30b, line

16 – f. 33a, line 7]; copy date: 751/1350
G :(گ) Mashhad, Guharshad ms. 1409 [f. 49b, line 7 – f. 51b, line 5]; copy

date: 1275/1858
L :(ل) Leiden, Leiden University ms. Or 194 [f. 46b, line 12 – f. 48b, line 1]
M :(م) Oxford, Bodleian, Marsh ms. 139 [f. 28a, line 3 – f. 29a, line 1]; copy

date: 768/1366
Y :(ی) Balıkesir, Balıkesir İl Halk Kütüphanesi, Dursunbey ms. 54 [page 40,

line 10 – page 42, line 4]; copy date: 1075/1664

Note on the manuscripts

An analysis of these copies has revealed that Ibn al-Šāṭir originally wrote the
first part of Nihāyat al-su’l (“ On the configuration of the heavens ”) without a
clear intention to add other parts. However, at the end of ms. F, Q, and M, Ibn
al-Šāṭir indicates that he will add a second part that would include planetary
“ equations ” (ta‘dīlāt). This part seems never to have been written and might
have been superseded by his Zīj. It would seem that subsequently he decided to
add a different part 2, this one dealing with the configuration of the Earth (hay’at
al-arḍ). Most of our manuscript witnesses contain this part 2. That being the
case, Ibn al-Šāṭir, or a copyist, then changed the explicit that we find in ms. F, Q,
and M, so that it now reads in our other manuscript witnesses that the second part
is on the configuration of the Earth and a third part would be on “ equations ”.
But like the original promise of a second part on equations, this third one was,
as far as we can tell, also never written.

None of the manuscripts are free of errors, and there are real problems (as
mentioned in the notes to the translation) with several of the parameters. It would

109 One more copy of the Nihāya is Cairo, Dār al-kutub, Taymūr Riyāḍa, ms. 154, which is
incomplete and does not include the chapter on Mercury. (See: David A. King, Fihris al-
maḫṭūṭāt al-‘ilmiyya al-maḥfūẓa bi-dār al-kutub al-miṣriyya, vol. 2 [Cairo, 1986], p. 35.)

51



248   Islamic Astronomy and Copernicus

seem, based on our experience with this chapter, that the textual tradition of
Nihāyat al-su’l became corrupt at a fairly early stage. Ms. B, H, and M are
arguably the best witnesses; ms. Q, which one might have expected to be reliable
based on its date and provenance, turned out to be corrupt in a number of places.
Of the Iranian manuscripts, ms. G was copied from ms. S, which itself is not
particularly useful.

Apparatus conventions

[ Separates reading in edition from any variant
: Separates variant and manuscript sigla
+ Added in
– Missing from
= Indicates another variant
(…) Editors’ comments
[!] sic

عطارد افٔ��� هيئة في والعشرون الحادي  الباب
للرصد الموافق مذهبنا علی

ونتوهّم الممثلّ. ويُسمّى ومركزه قطبيه وعلى البروج فلك سطح في فلكاً  نتوهّم
جهة الٕى ا��ؤج عند درجة وربع نصف الممثلّ سطح عن مائل سطحه ثانياً فلكاً
الميل ثابت وهو جزء سدس مائل قولٍ وعلى ثابت، غير الميل وهذا ٥الجنوب.

م ل، ق، ح، نتوهّم] ٣ –ف. هيئة] ١ د. ح، ب، :٢١ الباب والعشرون] الحادي الباب ١

ف. تتوهم: = گ س، فيتوهم: = (« فيتوهم » من (متغيّر د فنتوهم: = ی ب، يتوهم: =
من (متغيّر د = ی گ، س، ب، ويتوهم: = م ل، ق، ح، ونتوهّم] ٣ –ل. الممثلّ] ويُسمّى ٣

وربع نصف ٤ .(« صح » رمز مع ح في السطر (فوق مائل] ٤ ف. وتتوهم: = (« ويتوهم »
د. انه: + قولٍ] ٥ ق). هامش (في الجنوب] جهة الٕى ا��ؤج عند ٤–٥ د. دقيقة: مه درجة]
د دقيٯه: ٮٮ = ی ح، جزؤ: سدس جزء] سدس ٥ م). في (مشطوب درجه + سدس] ٥

ل. جزء: + = (« خ » رمز مع الهامش في « سدس » +)
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تسمّی متقابلتين، نقطتين على الممثلّ سطح يقاطع المائل وسطح ا��صٔحّ. وهو
المائل منطقة على مركزه ثالثاً فلكاً ونتوهّم الذنب. وا��خٔری الراسٔ احٕداهما
ستوّن المائل قطر نصف بها التي با��جٔزاء دقائق وخمس اجٔزاء ارٔبعة قطره ونصف
ونصف الحامل منطقة على مركزه رابعاً فلكاً ونتوهّم الحامل. ويُسمّی جزءاً،
على مركزه خامساً فلكاً ونتوهّم المدير. ويُسمّی درجة[!]، وثلُث نصف قطره ٥

تلك من دقيقة وارٔبعون وستّ جزءاً وعشرون اثنان قطره ونصف المدير منطقة
التدوير منطقة على مركزه سادساً فلكاً ونتوهّم التدوير. فلك ويُسمّى ا��جٔزاء،
مركزه سابعاً فلكاً ونتوهّم المحيط. ويُسمّى دقيقة، وث��ثون ث��� قطره ونصف
دقيقة، وث��ثون ث��� وهو المحي� قطر نصف مثل قطره ونصف المحي� على

الفلك. هذا منطقة على مركوز وعطارد الحافظ ويُسمّى ١٠

ل. متقابلين: متقابلتين] ١ ل). في السطر (فوق الممثلّ] ١ گ. س، لسطح: سطح] ١

ل، احدهما: = گ ق، ف، س، د، ح، ب، احٕداهما] ٢ ل. ف، ب، يسمی: تسمّی] ١
ويتوهم: = م ق، ،(« ويتوهم » من (متغيّر د ح، ونتوهّم] ٢ ب. وا��خر: وا��خٔری] ٢ ی. م،
ارٔبعة ٣ گ). في (بياض س)، في (محجوب مركزه] ٢ ل. ٮٮوهم: = ی گ، ف، س، ب،
گ. س، الفلك: + = ح) في (مشطوب قطر: + قطر] ٣ د. ه: د دقائق] وخمس اجٔزاء
يُسمّی] ٤ ل. ستون: = د جزوا: ٦٠ جزءاً] ستوّن ٣–٤ ق. الميل: = ف الممثل: المائل] ٣
= م ل، ق، ،(« ويتوهم » من (متغيرّ د ح، ونتوهّم] ٤ م. تسمی: = گ س، الفلك: +
الفلك: + ويُسمّی] ٥ د. دقيقه: ن درجة] وثلُث نصف ٥ ی. گ، ف، س، ب، ويتوهم:
تتوهم: = ی گ، س، ب، ويتوهم: = م ،(« ويتوهم » من (متغيرّ د ح، ونتوهّم] ٥ گ. س،
وارٔبعون وستّ جزءاً وعشرون اثنان ٦ ی. جزوا: جزءاً] ٦ ل. وىىوهم: = ق وىتوهم: = ف
ونتوهّم] ٧ م. وتسمی: ويُسمّى] ٧ گ. س، المذكورة: + ا��جٔزاء] ٧ د. مو: كٮ دقيقة]
ق وىتوهم: = ف وتتوهم: = ی گ، س، ب، ويتوهم: = م ،(« ويتوهم » من (متغيرّ د ح،
ی. ثلثه: = ق ف، ح، ثلث: ث���] ٨ گ. س، فلك: + منطقة] ٧ ل. وىىوهم: =
(مشطوب). ق درجة: + = ی ل، ق، ف، ح، وثلثون: = م گ، س، ب، وث��ثون] ٨

والشامل + المحيط] ٨ السطر). فوق « ق » رمز (يوجد د :٠ لحـ دقيقة] وث��ثون ث��� ٨
ق، ،(« ويتوهم » من (متغيّر د ح، ونتوهّم] ٨ ی. ،(« نخـ » رمز مع الهامش (في ل ائضا:
مثل] ٩ ق. ف، منطقة: + على] ٩ ف. وتتوهم: = ی گ، س، ب، ويتوهم: = م ل،
ح، وثلثون: = گ س، ب، وث��ثون] ٩ ی. م، ق، ف، ح، ثلث: ث���] ٩ ی. ميل:

د. دقيقه: ٠ لحـ دقيقة] وث��ثون ث��� ٩ ی. م، ل، ق، ف،

تسمّی متقابلتين، نقطتين على الممثلّ سطح يقاطع المائل وسطح ا��صٔحّ. وهو
المائل منطقة على مركزه ثالثاً فلكاً ونتوهّم الذنب. وا��خٔری الراسٔ احٕداهما
ستوّن المائل قطر نصف بها التي با��جٔزاء دقائق وخمس اجٔزاء ارٔبعة قطره ونصف
ونصف الحامل منطقة على مركزه رابعاً فلكاً ونتوهّم الحامل. ويُسمّی جزءاً،
على مركزه خامساً فلكاً ونتوهّم المدير. ويُسمّی درجة[!]، وثلُث نصف قطره ٥

تلك من دقيقة وارٔبعون وستّ جزءاً وعشرون اثنان قطره ونصف المدير منطقة
التدوير منطقة على مركزه سادساً فلكاً ونتوهّم التدوير. فلك ويُسمّى ا��جٔزاء،
مركزه سابعاً فلكاً ونتوهّم المحيط. ويُسمّى دقيقة، وث��ثون ث��� قطره ونصف
دقيقة، وث��ثون ث��� وهو المحي� قطر نصف مثل قطره ونصف المحي� على

الفلك. هذا منطقة على مركوز وعطارد الحافظ ويُسمّى ١٠

ل. متقابلين: متقابلتين] ١ ل). في السطر (فوق الممثلّ] ١ گ. س، لسطح: سطح] ١

ل، احدهما: = گ ق، ف، س، د، ح، ب، احٕداهما] ٢ ل. ف، ب، يسمی: تسمّی] ١
ويتوهم: = م ق، ،(« ويتوهم » من (متغيّر د ح، ونتوهّم] ٢ ب. وا��خر: وا��خٔری] ٢ ی. م،
ارٔبعة ٣ گ). في (بياض س)، في (محجوب مركزه] ٢ ل. ٮٮوهم: = ی گ، ف، س، ب،
گ. س، الفلك: + = ح) في (مشطوب قطر: + قطر] ٣ د. ه: د دقائق] وخمس اجٔزاء
يُسمّی] ٤ ل. ستون: = د جزوا: ٦٠ جزءاً] ستوّن ٣–٤ ق. الميل: = ف الممثل: المائل] ٣
= م ل، ق، ،(« ويتوهم » من (متغيرّ د ح، ونتوهّم] ٤ م. تسمی: = گ س، الفلك: +
الفلك: + ويُسمّی] ٥ د. دقيقه: ن درجة] وثلُث نصف ٥ ی. گ، ف، س، ب، ويتوهم:
تتوهم: = ی گ، س، ب، ويتوهم: = م ،(« ويتوهم » من (متغيرّ د ح، ونتوهّم] ٥ گ. س،
وارٔبعون وستّ جزءاً وعشرون اثنان ٦ ی. جزوا: جزءاً] ٦ ل. وىىوهم: = ق وىتوهم: = ف
ونتوهّم] ٧ م. وتسمی: ويُسمّى] ٧ گ. س، المذكورة: + ا��جٔزاء] ٧ د. مو: كٮ دقيقة]
ق وىتوهم: = ف وتتوهم: = ی گ، س، ب، ويتوهم: = م ،(« ويتوهم » من (متغيرّ د ح،
ی. ثلثه: = ق ف، ح، ثلث: ث���] ٨ گ. س، فلك: + منطقة] ٧ ل. وىىوهم: =
(مشطوب). ق درجة: + = ی ل، ق، ف، ح، وثلثون: = م گ، س، ب، وث��ثون] ٨

والشامل + المحيط] ٨ السطر). فوق « ق » رمز (يوجد د :٠ لحـ دقيقة] وث��ثون ث��� ٨
ق، ،(« ويتوهم » من (متغيّر د ح، ونتوهّم] ٨ ی. ،(« نخـ » رمز مع الهامش (في ل ائضا:
مثل] ٩ ق. ف، منطقة: + على] ٩ ف. وتتوهم: = ی گ، س، ب، ويتوهم: = م ل،
ح، وثلثون: = گ س، ب، وث��ثون] ٩ ی. م، ق، ف، ح، ثلث: ث���] ٩ ی. ميل:

د. دقيقه: ٠ لحـ دقيقة] وث��ثون ث��� ٩ ی. م، ل، ق، ف،
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ستيّن كلّ في التوالي الٕى البروج قطبي على يتحركّ الممثلّ فإنّ الحركات وامّٔا
مثل التوالي الٕى يتحركّ فإنهّ المائل وامّٔا ا��ؤجات. حركة مثل وذلك درجة سنة
ى. ح نط ٠ بليلته اليوم في وهو الشمس مركز مثل وهو عطارد مركز حركة
عطارد مركز حركة مثل التوالي خ��ف الٕى اعٔ��ه في يتحركّ فإنهّ الحامل وامّٔا
حركة فضل بقدر التوالي الٕى اعٔ��ه في يتحركّ فإنهّ التدوير فلك وامٔا ٥ائضاً.

وهو ب[!] يد يح ب ٠ بليلته اليوم في وهو مركزه حركة على عطارد خاصّة
بسيطة. حركة

التدوير هذا حركة بقدر ��نٔهّا مركّبة بسيطة فإنهّا عطارد خاصة حركة وامٔا
ى، ح نط ٠ هي التي عطارد مركز حركة مع ب[!] يد يح ب ٠ هي التي
بقدر للذروة الكوكب مفارقة فيحصل واحدة، جهة الٕى الحركتين لكون ١٠وذلك

خاصة حركة وهي مب، كح لز لح ا ى كد و جـ ٠ وهي الحركتين مجموع
التدوير. مركز عند مستوية وهي المركّبة عطارد

س، واحدة: + درجة] ٢ –ل. سنة] ٢ د. :٦٠ ستيّن] ١ گ. س، فلك: + قطبي] ١
في السطر (فوق نٮ مط + ى] ح نط ٠ بليلته اليوم في وهو ٣ ق. ف، فهو: وهو] ٣ گ.
گ. بليلته: اليوم في ى ح نط ٠ ٠ وهو = س بليلته: اليوم في ى ح نط ٠ وهو = د)
ب خ��ف: + الٕى] ٥ گ. عله: اعٔ��ه] ٥ –گ. –س، فلك] ٥ ی. حركت: حركة] ٤

ف، وهي: = –گ –س، = ی م، ل، د، ح، ب، (ا��ؤلّ)] وهو ٦ ی. ل، السطر)، (فوق
لط: نو لط نا ط ٠ ٮو و ٮ ٠ لعله + = ی ب، ب: يد نح ب ٠ ب] يد يح ب ٠ ٦ ق.
ب ٠ + ��نٔهّا] ٨ –ف. خاصة] ٨ م. ق، ف، وهذه: (الثاني)] وهو ٦ الهامش). (في م
نح ب ٠ هي التي = م ق، د، ح، ب] يد يح ب ٠ هي التي ٩ گ. س، ب: يد يح
س، بليلته: اليوم في + هي] ٩ ی. حركت: حركة] ٩ –گ. –س، = ی ل، ب، ب: يد
ی. مفارقت: مفارقة] ١٠ ق. ف، فتحصل: فيحصل] ١٠ گ. الكون: لكون] ١٠ گ.
كد = م ق، د، ح، مب] كح لز لح ا ى كد و جـ ٠ ١١ ق). هامش (في الكوكب] ١٠
٠ مب كح لز لح ا ی كد و جـ ٠ = الهامش) في « و حـ ٠ » (ويوجد ب مب: لز لح ا ی
مب: يح لز لح ا ى كد و جـ ٠ = گ :٠ ٠ مب كح لو لح ا ی كه و جـ ٠ = س :٠
المركب: المركّبة] ١٢ ی. حركت: حركة] ١١ ی. مب: لح لر ىح ا ی كد و جـ ٠ = ل

ی.
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ربع الحامل وتحركّ دائرة ربع المائل تحركّ اذٕا انٔهّ ايٕضاحاً ذلك يزيد ومما
الخاصّة حركته مبتدأ هي التي الذروة انتقلت دائرة، نصف المدير وتحركّ دائرة
حركة مثل التوالي الٕى منتقلة انٔهّا بالرصد وجدت وانٕمّا التوالي. الٕى دائرة ربع
الٕى مركزه حول التدوير حركة فيكون ى، كد و جـ ٠ هي التي عطارد خاصّة
واحدة. جهة الٕى لكونهما المركز حركة علی الخاصّة هذه فضل بقدر التوالي ٥

ذلك. اتضّح فقد
عطارد مركز حركة ضعف مثل التوالي الٕى اعٔ��ه في يتحركّ فإنهّ الشامل وامّٔا
التوالي خ��ف الٕى اعٔ��ه في يتحركّ فإنهّ الحافظ وامّٔا ك. يو نح ا اليوم في وهو

لط. لب نو جـ اليوم في وهي عطارد مركز حركة امٔثال ارٔبعة

س، ح، مبتدأ] ٢ –ی. –ل، –ب، دائرة] ربع الحامل وتحركّ ١–٢ س. د، ذالك: ذلك] ١

ب، حركة: = ل حركته] ٢ م. منند: = ق ف، د، مبدأ: = ی ل، ب، مثل: = گ
م. ق، ف، وجد: وجدت] ٣ ی. ىحركت: = گ س، الحركة: = م ق، ف، د، ح،
ی. حركت: حركة] ٣ ی. منتقلت: = ب ننقلىه: منتقلة] ٣ ی. بارصادنا: بالرصد] ٣

گ. س، ب: ی كد و ج  ٠ = ح ا: ی كد و ج  ٠ = م ل، ق، د، ب، ى] كد و جـ ٠ ٤

ی. حركت: = ل ب، حركة: حول] ٤ ی. حركت: حركة] ٤ م. ق، د، فتكون: فيكون] ٤

ل. ،(« بقدر » الٕى متغيّر « بعد ») ب بعد: التوالي فضل] بقدر التوالي ٥ م. بقد: بقدر] ٥

علی] ٥ ق). في (مشطوب الحركة: + = ب) في « حركة » الٕى متغيّر « هذه ») هذه] ٥

وحركة: حركة] ٥ .(« خ » رمز مع د هامش في « على ») د عند: = ب) في (مشطوب
و الخاصة حركت بقدر المركز] حركة على الخاصّة هذه فضل بقدر ٥ ف. هذا: + = ب
وهو + الشامل] ٧ –ی. –ل، ذلك] ٦ گ. س، لكونها: لكونهما] ٥ ی. المركز: حركت
ٮح ٠ ٮح ا » +) ل ك] يو نح ا ٨ –ی. حركة] ٧ –ی. التوالي] ٧ گ. س، المحيط:
(« يو » الٕى متغيّر « يح ») ب ك: يح نح ا = ی ،(« ٮحـ » رمز مع ل هامش في « ك
م. ك: يح ٠ نح ا = گ س، بليلته: ك يح ٠ يح ا = ق ف، د، ح، ك: يح ٠ يح ا =
= گ س، ح، فإنهّ] ٨ ی. م، ل، ق، ف، د، الحافظة: = گ س، ح، ب، الحافظ] ٨

وهي] ٩ –ی. مركز] ٩ م. ق، د، تتحرك: يتحركّ] ٨ ی. م، ل، ق، ف، د، ب، فانها:
،(« لب » الٕى متغيّر « لو ») ب لط: لو نو ج  اليوم = ی لط] لب نو جـ اليوم ٩ ی. وهو:
نو ج  بليلته اليوم = س لط: لز نو ج  بليلته اليوم = ح :٠ ٠ لط لز نو ج  = م ق، ف، د،

ل. لط: لز نو جـ اليوم = گ لط: لو
55



252   Islamic Astronomy and Copernicus

يقرب الشامل، مركز الٕى التدوير مركز من الخارج الخطّ على عطارد يزال ف��
التدوير مركز كان واذٕا عنه. خارج غير الخطّ على وهو ويبعد التدوير مركز من
هذا ويسمّى تدويره، مركز من قربه اقٔرب في عطارد كان الحضيض اؤ ا��ؤج في
واذٕا جزء. وثلُث[!] جزءاً وعشرون احٔد وهو المرئي التدوير قطر نصف القرب
ث��� وهو التدوير مركز من بعده ابٔعد في عطارد كان بروج ث��ثة المركز ٥كان

العالم مركز من عطارد بعد ابٔعد فيكون دقيقة. وخمسون واثنتان درجة وعشرون
الٕى يقرب �� عطارد انّٔ إ�ّ� وثلُث، وث��ثون ث��ثة قربه واقٔرب وثلُثين وثمانون ستةّ

الموضع. هذا غير في قبل اؤضحنا ما على الم�سّمة افٔ��كه قرب اقٔرب

ح، و: = ی م، ل، ق، ف، ب، اؤ] ٣ ق. ف، اذا: واذٕا] ٢ ح. عطار: عطارد] ١

المرئي] ٤ –ل. التدوير] ٤ –ف. نصف] ٤ ق. ف، عطارد: تدوير تدويره] ٣ گ. س، د،
ی. م، گ، س، جزواً: جزءاً] ٤ گ. س، احدي: احٔد] ٤ ی. م، ق، ف، ب، المرى:
گ، ف، س، د، ح، ب، ث���: = ق ث��ثة] ٥ د. ك: كا جزء] وثلُث جزءاً وعشرون احٔد ٤

رمز (يوجد د ن�: ك�� دقيقة] وخمسون واثنتان درجة وعشرون ث��� ٥–٦ ی. ثلث: = م ل،
درجة] ٦ ف. عشرون: وعشرون] ٦ ی. ق، ف، ح، ثلث: ث���] ٥ السطر). فوق « ق »
ست: ستةّ] ٧ ی. م، ل، گ، س، ح، ب، واثنان: = ق ف، واثنتان] ٦ گ. س، جزواً:
گ، س، ح، ب، وثلثي: = ق ف، وثلُثين] ٧ د. م: فو وثلُثين] وثمانون ستةّ ٧ گ. س،
من عطارد بعد ابعد فيكون دقيقه خمسون واثنان جزوا وعشرون ث��� � قربه] ٧ ی. م، ل،
ل، ،(« ث��� » من (مت�يّر ب ث��ثة] ٧ گ. قربه: واقرب وثلثين وثمانون ست العالم مركز
= ق ف، ح، وثلثين: = ب وث��ثون] ٧ ی. ق، ف، ح، ثلثة: = گ س، ث���: = م
گ س، ح، وثلُث] ٧ د. ك: لج وثلُث] وث��ثون ث��ثة ٧ ل. وثلثون: = م گ، س، وث��ثين:
گ. س، ح، ا��: = ی م، ل، ق، ف، د، ب، [�� ٧ ی. م، ل، ق، ف، ب، وثلثا: =
=  –ل. ق قربه: قرب] ٨ م. بقرب: = ق ىقرب: = ل گ، س، د، ح، ب، يقرب] ٧

هذا] ٨ ی. م، ل، ق، ف، ب، موضع: غير في = گ س، د، ح، الموضع] هذا غير في ٨

ح). في السطر (فوق
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ونصف نب؛ كح الحامل كرة قطر نصف فإنّ المجسّمة ا��فٔ��� اقٔدار وامٔا
كرة قطر ونصف نب؛ كجـ التدوير كرة قطر ونصف مز؛ كد المدير كرة قطر
نصف بها التي با��جٔزاء الجميع لجـ، ٠ الحافظ كرة قطر ونصف و؛ ا الشامل
وخمسين واثنتين وثمانين ثمانية الممثلّ بعد ابٔعد فيكون جزءاً. ستوّن الممثلّ قطر
افٔ��كه قرب واقٔرب ل، فط تتمّة ولنفرضه الممثلّ سمك ذلك وفوق دقيقة. ٥

اعٔلم. والله ٠ �� فنفرضه الفلك باتصّال ذلك من واقٔلّ ح ��

گ. س، د، قطر: = ح قطره: = م ل، ق، ب، كرة] قطر ١ ب. اف��كه: ا��فٔ���] ١

المدير كرة قطر ونصف ١–٢ ی. م، ل، گ، ق، ف، س، د، ح، ب، ىٮ: كح نب] كح ١

كرة قطر ونصف نب كجـ التدوير كرة قطر ونصف نب] كجـ التدوير كرة قطر ونصف مز؛ كد
كرة ٢ گ. نٮ: كح = ی م، ل، ق، ف، س، ح، ب، نب] كجـ ٢ د. مز: كد المدير
مب: كد = ی م، ل، ق، ف، ح، ب، مز] كد ٢ ل). في (مشطوب التدوير: + (ا��ؤّل)]
لج : ٠ ا = م گ، ق، ف، س، ح، لجـ] ٠ ٣ ی. ل، ب، ز: ا و] ا ٣ گ. س،
ف، ستين: = د :٦٠ ستوّن] ٤ د. :٠ لج  ٠ = ی ل، ،(« لج  و ا » من (متغيرّ ب
(ويوجد ل (الثاني)] الممثلّ ٤ ق. فكون: فيكون] ٤ م. گ، س، د، جزوا: جزءاً] ٤ ق.
فح دقيقة] وخمسين واثنتين وثمانين ثمانية ٤–٥ .(« ٮح » رمز مع ل هامش في « المائل »
هامش في (مشطوب قربه: واقرب + = گ س، السطر)، فوق « ق » رمز (يوجد د نٮ:
ف واسنتين: = ب اثىين: = م ح، واثنتين] ٤ ل). هامش (في درجة: + وثمانين] ٤ ح).
م. للمىل: الممثلّ] ٥ ی. وفوقه: ذلك] وفوق ٥ –ی. = ل واىىىن: = ق =  واىىىىن:
د، ح، ل: نط = ی م، ل، ق، ف، ب، ل] فط ٥ –د. تتمّة] ٥ ف. ولتفرضه: ولنفرضه] ٥

باتصّال] ٦ ق). في (مشطوب الكوكب: قطر نصف + = –ب ذلك] من واقٔلّ ٦ گ. س،
–د، –ب، اعٔلم] والله ٦ ب. :�� [٠ �� ٦ گ. س، ونفرضه: فنفرضه] ٦ ف. واتصال:

–ق. –ف،
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[Fig. A1.]

على يتصورّ ما حسب على التامّة ا��كٔر مراك� انّٔ�ا على عطارد افٔ���  صورة
ا��ؤسطين. والب��ين وال��ي� ا��ؤ� في البسيط

في البسيط على يتصورّ ما حسب على التامّة ١–٢ گ. س، د، ح، صورة: وهذه صورة] ١

على التامة = د فتامله: + = –ب = گ س، ح، ا��ؤسطين] والب��ين وال��ي� ا��ؤ�
على التامّة = ق البسيط: على تقع ما حسب على التامّة = ف البسيط: على نفع ما حسب
حسب علی التامت = م البسيط: على يتصورّ ما حسب على التامّة = ل يتصورّ: ما حسب

ی. البسيط: في يتصور ما
58
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[Fig. A2.]

يتصورّ ما حسب علی تامّة كرات وهي المجسّمة عطارد افٔ��� صورة  وهذه
ا��ؤسطين. والبعدين والحضيض ا��ؤج في البسيط على

اعلم: والله + = ب المجسّمة: عطارد افٔ��� صورة ا��ؤسطين] والبعدين . . . صورة وهذه ١–٢

في البسيط على يتصور ما حسب علی تامّة كرات وهي المجسّمة عطارد افٔ��� صورة = د ح،
حسب علی تامّة كرات وهي المجسّمة عطارد افٔ��� صورة = س والبعدين: والحضيض ا��ؤج
عطارد افٔ��� صورة = م ق، ا��ؤسطين: والبعدين والحضيض ا��ؤج في البسيط على يتصور ما
والبعدين: الحضيض ا��ؤج في البسيط على يصور ما حسب علی تامّة كرات وهي المجسّمة
في البسيط على يتصور ما حسب علی تامّة كرات وهي المجسّمة عطارد افٔ��� وصورة = گ
عطارد اف��� صورة ا��تية الص�حة وفي = � اعلم: والله ا��ؤسطين والبعدين والحضيض ا��ؤج
ا��ؤسطين] ٢ –ف. وهذه] ١ ی. البسيط: علی يتصور ما حسب التامة الكراة المجسمة في

ف. 59ا��سطر:
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Ibn al-Shir

Ibn al-Shir (b. probably 705/1306, 
d. 777/1375–6) was one of the most 
important astronomers of pre-modern 
Islam, writing on a variety of topics 
and producing one of the most innova-
tive astronomical systems prior to the 
advances of early modern Europe. His full 
name is Al al-Dn Ab l-asan Al b. 
Ibrhm b. Muammad b. al-Humm Ab 
Muammad b. Ibrhm b. assn b. Abd 
al-Ramn b. Thbit al-Anr al-Aws. 
Sources do not agree about his birth 
date, but the one reported by al-afad 
(15 Shabn 705/2 March 1306), who 
met Ibn al-Shir, seems the most reliable 
(al-afad, 20:302).

Ibn al-Shir was born in Damascus. His 
father died when he was six, after which 
he was raised by a cousin on his father’s 
side, who was married to Ibn al-Shir’s 
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maternal aunt. His stepfather’s name was 
Al b. Ibrhm b. Ysuf b. al-Shir, who 
was known as Ibn al-Shir, whence the 
name under which our Ibn al-Shir came 
to be known. His stepfather taught him 
the art of ivory inlaying (tam), so he 
became known as al-Muaim. He appar-
ently earned a good living and lived in a 
fine house in the Bb al-Fards quarter 
of Damascus (Ibn ajar, 1:116; al-afad, 
20:302; cf. al-Maqrz, 2:526).

According to al-afad (20:302), Ibn 
al-Shir studied the mathematical sci-
ences with his stepfather, Al b. Ibrhm. 
Later, in 719/1319, he travelled to Cairo 
and Alexandria to further his studies (Ibn 
ajar, 1:116; cf. al-Maqrz, 2:526). Dur-
ing this period, Egypt was home to several 
prominent scientists working in astron-
omy, especially involving instruments 
and practical applications (King, Astron-
omy, 531, 534–5). Amongst these was 
Ibn al-Sarrj (d. after 748/1347–8), with 
whom Ibn al-Shir corresponded and 
exchanged treatises regarding an instru-
ment known as al-rub al-mujanna, which 
Ibn al-Sarrj invented and Ibn al-Shir 
modified. Ibn al-Shir’s treatise is not 
extant, but Shams al-Dn Muammad b. 
Ab l-Fat al-f al-Mir (fl. c.900/1495) 
summarised it in one of his treatises (Cha-
rette, 15 n. 63; al-afad, 20:307).

Ibn al-Shir was the long-time chief 
muezzin (ras al-muadhdhinn) and time-
keeper (muwaqqit) at the Umayyad Mosque 
in Damascus (al-afad, 20:302). His roles 
at the Umayyad Mosque secured his fame, 
and his works, as indicated by ownership 
notes, were esteemed by later generations 
of timekeepers (e.g., Tehran, Sepahslr, 
MS 598, fol. 1a). Although Ibn al-Shir 
never occupied a formal teaching position, 
Jaml al-Dn al-Mridn (d. 809/1406–7), 

who later became a timekeeper at al-Azhar 
Mosque in Cairo and was the grandfather 
of Sib al-Mridn (d. c.900/1495), stud-
ied under him (King, Analog computer, 
219–20 n. 2).

1. Ibn al-Sh ir  and astronomy
Ibn al-Shir was firmly within the Hel-

lenistic traditions of astronomy and their 
continuation in the Islamic world, and he 
had access to many of the works of his 
predecessors in these traditions. At some 
point, Ibn al-Shir decided to test Ptol-
emy’s (fl. c.140 C.E.) observations. This 
led him to write a work titled Nihyat 
al-ghyt f aml al-falakiyyt (“The culmi-
nation of goals regarding astronomical 
operations”), which is not extant, but is 
based, according to Ibn al-Shir in his 
al-Zj al-jadd, on Ptolemy’s models in the 
Almagest. Later, basing himself on alterna-
tives to Ptolemy’s models, he wrote Talq 
al-ard, not extant, in which he estab-
lished his new models based on his own 
observations (al-afad, 20:306). The tra-
dition of alternatives to Ptolemy’s models 
dates back at least to Ibn al-Haytham  
(d. c.431/1040); this tradition found fault 
with Ptolemy’s violations of the accepted 
physics that demanded uniform circular 
motions in the heavens resulting from 
the rotations of spherical orbs (Saliba, 
134–70). Later astronomers in this tradi-
tion usually listed several problems with 
Ptolemaic models, ten of which were cited 
by al-afad as well known. He went on 
to say that Ibn al-Shir supplemented 
this list with an additional nineteen prob-
lems and claimed that he had solved them 
all in his Talq al-ard. Al-afad notes, 
however, that Ibn al-Shir wrote two 
monographs, Maqla f qurb falak al-burj 
min muaddil al-nahr and Maqla f arakat 
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al-iqbl wa-l-idbr, in which he denied the 
existence of two of the ten well known 
problems, namely, the variability of the 
obliquity of the ecliptic in the Maqla f 
qurb, and variable precession in the Maqla 
f arakat (al-afad, 20:304–6).

Ibn al-Shir later presented his new 
models in Nihyat al-sul f ta al-ul 
(“The culmination of inquiry into correct-
ing the hypotheses”) but without the full 
derivations found in Talq al-ard. The 
Nihyat al-sul is in the genre of haya basa 
(simplified theoretical astronomy, i.e., 
presented mostly without the geometrical 
derivations). Most of the extant manu-
scripts comprise an introduction and two 
additional parts: one on the configuration 
of the celestial realm (hayat al-sam) and 
one on the configuration of the Earth, that 
is, the sublunary realm (hayat al-ar). An 
additional part on the calculation of plan-
etary equation tables (promised in some 
manuscript copies) seems never to have 
been written; he probably decided instead 
to write al-Zj al-jadd, several copies of 
which are extant. This zj (an astronomical 
handbook with tables) is innovative (thus 
jadd, new); in it, the new models of Nihyat 
al-sul were used instead of the standard 
Ptolemaic models. Al-afad mentions a 
zj written by Ibn al-Shir for Sayf al-Dn 
Tankiz (d. 740/1340), the Damascus-
based viceroy of Syria, whence it is called 
al-Zj al-Sayf. In the Nihyat al-sul and 
al-Zj al-jadd, Ibn al-Shir refers to works 
by Ptolemy; Ibn al-Haytham; Jbir b. 
Afla (fl. first half of the sixth/twelfth cen-
tury); Ibn Rushd (Averroës, d. 595/1198); 
al-Birj (Alpetragius, fl. 586/1190, in 
al-Andalus; Ibn al-Shir incorrectly calls 
him al-Majr); Muayyad al-Dn al-Ur 
(d. c.664/1266); Nar al-Dn al-s (d. 
672/1274); Muy l-Dn al-Maghrib (d. 

682/1283); and Qub al-Dn al-Shrz 
(d. 710/1311).

Although Ibn al-Shir is often included 
in the so-called Margha School (Margha 
was the site of a famous observatory) of 
al-Ur, al-s, and al-Shrz, his mod-
els differ fundamentally, inasmuch as he 
insists on making the Earth both the math-
ematical and cosmological centre of the 
Universe. This is accomplished by dispens-
ing with eccentric orbs (ones surrounding 
the Earth but with different centres) and 
using only Earth-centred orbs and epicy-
cles (orbs that do not surround the Earth). 
This seems to be a compromise system 
that solves Ptolemy’s violations using epi-
cycles rather than eccentrics while making 
the Earth the primary mathematical cen-
tre. This “quasi-homocentric” cosmology 
may well owe something to the works of 
sixth/twelfth-century Andalusians such as 
Ibn Rushd and al-Birj, who sought to 
return to the pure homocentric system of 
Aristotle (Ragep, 408). Unlike the astron-
omy of al-Birj, however, Ibn al-Shir’s 
models can faithfully reproduce Ptolemy’s 
mathematical results, which generally rep-
resent celestial motions accurately.

With the exception of al-Zj al-jadd, Ibn 
al-Shir’s works had less influence than 
one might expect. The manuscript tradi-
tion of his works is spotty; many works are 
lost, and important works, such as Nihyat 
al-sul, are replete with copyists’ errors. 
Nevertheless, references to him and his 
work are not uncommon in Islamic lands, 
and there is strong evidence that he was 
known in other cultural contexts.

We know that Shams al-Dn al-Mir 
and Taq al-Dn Ibn Marf al-Rid (d. 
993/1585), two prominent astronomers 
of the early modern period, owned cop-
ies of Nihyat al-sul (Oxford, Bodleian 
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Library, MS Marsh 139, fol. 64b, owned 
by Shams al-Dn in 908/1502–3; Tehran, 
Sepahslr, MS 598, fol. 1a, owned by 
Taq al-Dn in 970/1562–3). In his Sidrat 
muntah al-afkr f malakt al-falak al-dawwr 
(“The Lotus Tree of ultimate contempla-
tion regarding the realm of the revolving 
orb”), Taq al-Dn criticised Ibn al-Shir’s 
models (Istanbul, Nuruosmaniye, MS 
2930, fol. 2a). The Nihyat al-sul was also 
mentioned by Ghars al-Dn Ibn Amad 
b. al-Khall al-alab (d. c.971/1563–4; 
see Rosenfeld and hsanolu, 327) and 
Abd al-Qdir b. Muammad al-Manf 
al-Shfi (fl. 980/1572–3; see Rosenfeld 
and hsanolu, 340). Al-zj al-jadd was 
popular, and numerous commentaries, 
super-commentaries, and abridgements 
of it are extant (Azzw, 51–2; King,  
Survey, 62).

Since the 1950s, there has been strong 
evidence, based on remarkable similarities, 
that Nicholas Copernicus (d. 1543 C.E.), 
when writing his early work known as 
the Commentariolus, knew of Ibn al-Shir’s 
planetary models (Roberts; Kennedy and 
Roberts; Swerdlow and Neugebauer, 61 
and passim). It has also lately come to light 
that a Jewish scholar named Moses Gale-
ano brought knowledge of Ibn al-Shir’s 
models to Italy at about the time Coper-
nicus was studying there (Langermann, 
290–6; Morrison). Most historians have 
argued that Ibn al-Shir’s models showed 
Copernicus a way to resolve some of the 
irregularities of Ptolemy’s models, but 
they had little to do with his turn to 
heliocentrism. An argument has, however, 
recently been made that Ibn al-Shir’s 
models exhibit a “heliocentric bias” that 
may well have influenced Copernicus’s 
decision to propose a new, Sun-centred 
cosmology (Ragep, 396).

2. Ibn al-Sh ir  and 
astronomical instruments
Al-afad records a meeting that took 

place in Raman 743/February 1343 at 
Ibn al-Shir’s home in Damascus, at which 
time he was shown an interesting astro-
labe with an attached clock, both of which 
were automated (al-afad, 20:302–4). 
This is just one of Ibn al-Shir’s contribu-
tions to the long-standing Islamic tradition 
of making astronomical instruments; this 
tradition included both improving exist-
ing instruments and inventing new ones. 
These instruments were for 1) observa-
tion and measurement, 2) the simulation 
of heavenly motions, and 3) solving prob-
lems in spherical astronomy. Names of 
astronomical instruments invented by Ibn 
al-Shir and his monographs on each are 
as follows (the first five are mentioned by 
al-afad, 20:307):

1) Al-rub al-tmm li-mawqt al-Islm 
(“The complete quadrant for timekeep-
ing in Islam”), described in al-Naf al-mm 
f l-amal bi-l-rub al-tmm (“The general 
advantage of using the complete quad-
rant”), in which Ibn al-Shir promised 
an abridged version of the treatise, which 
is probably al-Risla lil-rub al-tmm (“Trea-
tise on the complete quadrant”) = Risla f 
l-amal bi-l-rub al-tmm al-maw li-mawqt 
al-Islm (“Treatise on the use of the com-
plete quadrant as applied to timekeeping 
in Islam”); King, Survey, 62).

2) Al-rub al-jmi (“The universal quad-
rant”), originally described in Tufat 
al-smi f l-amal bi-l-rub al-jmi (“The 
gift to the learner on the use of the uni-
versal quadrant”), which is not extant; 
its abridgement by Ibn al-Shir himself, 
Nuzhat al-smi f l-amal bi-l-rub al-jmi 
(“The learner’s delight on the use of the 
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universal quadrant”), exists; see King, 
Fihris, 2:543).

3) Al-mamarrt al-fqiyya (“Horizon 
transits”) (apparently not extant).

4) Al-rub al-mujanna (“The ‘winged’ 
quadrant”), which is probably the modi-
fied version of the instrument invented by 
Ibn al-Sarrj, mentioned by Shams al-Dn 
al-Mir.

5) Al-la al-jmia (“The universal instru-
ment”), described in al-Ashia al-lmia 
f l-amal bi-l-jmia (“Shining rays on the 
use of the universal [instrument]”). Ab 
Al al-Marrkush (d. c.700/1300) is 
mentioned in this treatise. Taq al-Dn 
al-Rid’s al-Thimr al-ynia min quf al-la 
al-jmia (“Ripe fruits from the harvest of 
the universal instrument”) was inspired by 
it; King, Fihris, 2:533).

6) andq al-yawqt (“Box of gems/sap-
phires”), a multi-purpose instrument in 
which a magnetic compass was fitted in 
order to align it in the cardinal directions, 
described in Tashl al-mawqt f l-amal 
bi-andq al-yawqt (“Facilitating timekeep-
ing by using the box of gems”), which is 
not extant; on the instrument itself, see 
Janin and King, 190).

7) Al-rub al-Al (“The Al quad-
rant”), described in al-Risla f l-rub 
al-Al (“Treatise on the Al quadrant”; 
Schmalzl, 100).

8) Al-murabbaa (“The square instru-
ment”), attributed to Ibn al-Shir by Ibn 
al-Ar (King, Survey, 62–3). A certain 
Ibn al-Ghuzl composed in 779/1377–8 
a treatise based on a work by Ibn al-Shir 
dealing with al-murabbaa (Charette, 17). 
King suggests that Ibn al-Shir is the 
author of the anonymous treatise in Cairo 
that is about the same instrument.

9) Al-rub al-kmil (“The perfect quad-
rant”), described in Rislat al-rub al-kmil 
(“Treatise on the perfect quadrant”).

Ibn al-Shir also wrote several works 
on instruments that were invented before 
him: 1) al-Ishrt al-imdiyya f l-mawqt 
al-shariyya (“Fundamental indications on 
legally sanctioned timekeeping”), or Risla 
f l-amal bi-l-uturlb wa-rub al-muqanart 
wa-l-rub al-mujayyab (“Treatise on the use 
of the astrolabe, the almucantar quad-
rant, and the sine quadrant”); 2)  
al-mughayyab f l-amal bi-l-rub al-mujayyab 
(“Elucidation of the obscure regarding 
the use of the sine quadrant”); 3) Kashf 
al-mughayyab f l-isb bi-l-rub al-mujayyab 
(“Uncovering the obscure regarding cal-
culation with the sine quadrant”); 4) al-
Zubd al-mar f l-amal bi-l-jayb bi-ghayr mur 
(“The manifest essence on the use of the 
sine quadrant without the muri [string cal-
culator]”).

We are fortunate to have several 
instruments made by Ibn al-Shir: 1) an 
astrolabe, bearing the date 726/1326, cur-
rently held by the Observatoire National, 
Paris (Mayer, 42); 2) an exemplar of his 
al-la al-jmia (“Universal instrument”) 
made in 738/1338 and dedicated to 
Shaykh Al b. Muammad al-Darband, 
in the Museum of Islamic Art, Cairo 
(Mayer, 40); 3) another exemplar of al-la 
al-jmia, bearing the same year and dedi-
catee, in Bibliothèque Nationale, Paris 
(Mayer, 41); 4) an exemplar of his origi-
nal instrument, the andq al-yawqt (“Box 
of sapphires”), dated 767/1366, recently 
located in Aleppo (present location and 
situation unknown; Reich and Wiet, 195; 
Janin and King, 187); it was dedicated to 
Mankal-Bugh, the viceroy of Aleppo (d. 
774/1372–3); 5) fragments of his sundial, 
dated 773/1371–2 and constructed for 
the Umayyad Mosque in Damascus, pre-
served in the National Museum, Damas-
cus; a replica of it was made in about 
1873 by a certain Shaykh Muammad 
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al-anw (d. 1886) and placed in the 
Umayyad Mosque (Badrn, 365; King, 
Ibn al-Shir, 361).

3. Other works by Ibn 
al-Sh ir
Three works on mathematics are 

attributed to Ibn al-Shir, but there is no 
known copy: al-Mal f ab al-ul (on 
geometry), Kitb f l-misa (on surveying), 
and Kitb f l-isb (on arithmetic). There 
are also several works that have been 
attributed to Ibn al-Shir but are uncor-
roborated, including A5-A9, A16, A19, 
A21-A25, A28, A30-A32, and A34-A35 
(Rosenfeld and hsanolu, 254–6).
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Tūsı̄ and Copernicus: The Earth’s Motion in Context* ˙

F. Jamil Ragep

University of Oklahoma

Argument

A passage in Copernicus’s De Revolutionibus regarding the rotation of the Earth provides 
evidence that he was aware, whether directly or indirectly, of an Islamic tradition dealing with
this problem that goes back to Na

˙
sı̄r al-Dı̄n al-

˙
Tūsı̄ (1201–1274). The most striking similarity

is the use of comets by both astronomers to discredit Ptolemy’s “proofs” in the Almagest that
depended upon observational evidence. The manner in which this question was dealt with by
Copernicus, as an astronomical rather than natural philosophical matter, also argues for his
being within the tradition of late medieval Islamic astronomy, more so than that of medieval
Latin scholasticism. This of course is bolstered by his use of non-Ptolemaic models, such as the

˙
Tūsı̄ couple, that have a long history in Islam but virtually none in medieval Europe. Finally,
al-Qūshjı̄, who was in Istanbul just before Copernicus was born, entertained the possibility
of the Earth’s rotation; this also opens up the possibility of non-textual transmission.

1. Introduction

In recent years, there has been considerable discussion regarding the possible
influence of late medieval Islamic astronomy1 on the work of Copernicus and other
Renaissance astronomers. For the most part, this influence has been presumed to be
limited to mathematical models and, perhaps, to criticism of Greek astronomy that
had led to these models. The story can be recapitulated as follows: Islamic
astronomers, beginning with Ibn al-Haytham in the eleventh century, faulted a
number of Ptolemy’s models on the grounds that they produced irregular motion,
which was a violation of the ancient principle that all celestial motion must be
uniform and circular. Beginning in the thirteenth century, this led to the proposal of
alternative models by several Islamic astronomers, dubbed collectively the Marāgha
School, whose purpose was to replace certain suspect Ptolemaic models and devices
(such as the equant) using various combinations of uniformly rotating orbs.
Copernicus, somehow aware of this late tradition of non-Ptolemaic astronomy, began

* I wish to thank Steven Livesey, Sally Ragep, A. I. Sabra, and Julio Samsó for helpful suggestions. It should
be noted that several of the texts discussed in this article are only available in manuscript and have yet to be
edited or translated. This will, I hope, be rectified in a forthcoming publication.
1 “Late” medieval astronomy refers here to the period beginning in the early thirteenth century. This is after
the main translation movement from Arabic into Latin had occurred.
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his work to reform astronomy under its influence. Eventually, in dealing with aspects
of planetary motion for which he had no Islamic precedent (in particular the motion
of certain epicycles that produce “the second anomaly”), he was led to transform his
system from a geocentric to a heliocentric one.2

Since medieval Islamic astronomy remained geocentric, it has been assumed that
the reasons for Copernicus’s decision to embrace a heliocentric cosmology and put
the Earth in motion are to be found within a European context. There is, however,
some tantalizing evidence that links Copernicus’s discussion of the Earth’s motion
with a long and increasingly sophisticated discussion of the Earth’s possible rotation
that occurred amongst a number of Islamic astronomers and philosopher/
theologians. In what follows, I will discuss the evidence linking Copernicus to this
Islamic tradition, indicate some of the main issues that animated this debate in Islam,
and speculate about the possible implications of this debate for Copernican
astronomy.

2. The Evidence

In chapter 8 of Book I of De Revolutionibus, Copernicus attempts to refute some of
the classical arguments for a stationary Earth at the center of the Universe. After
discussing a number of problems with attributing the daily motion to the celestial
region as a whole, he then moves on to justify the main alternative, namely the Earth’s
daily rotation. For this purpose he quotes a verse from the Aeneid meant to show that
from a ship on a calm sea one could not tell whether the ship or the land was in
motion, thus concluding with the widely dispersed idea that the “impression that the
entire universe is rotating” could be produced by the Earth’s rotation. The problem,
of course, was how to explain, given the rotation of the Earth, the corresponding –
and empirically necessary – rotation of bodies that were near to but detached from
the Earth. This was certainly one of the thorniest issues related to the assumption of
the Earth’s rotation, and Ptolemy had drawn particular attention to the absurd (and
non-observed) consequences that he assumed would occur to objects in the air if the
Earth were rotating. Copernicus’s answer is as follows:

Then what should we say about the clouds and other things suspended in the air in
whatever way or things that fall down or conversely things that rise up to the upper
regions? [We would say] that not only the earth with the watery element conjoined with
it moves in this way, but also not a small part of the air and whatever in the same way
has a natural connection (cognatio) to the earth. Either the nearby air, mixed with the
matter of earth or water, should conform to (sequatur) the same nature as the earth, or
the motion of the air, which has been acquired by the contiguity of the earth,

2 Admittedly this is a grossly simplified version of a fuller and much more careful exposition that one may find
in Swerdlow and Neugebauer 1984, esp. part 1, 41–64. Although there are parts of this story that need
revision, I will leave that for another occasion.
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participates in a perpetual rotation without resistance. On the other hand, it is no less
remarkable that the upper region of the air conforms to (sequi) the motion of the
heavens, which is indicated by those suddenly-appearing stars that the Greeks call
“comets” and “bearded stars”. It is maintained that they are generated in that place and,
furthermore, like the other stars, they rise and set. We can say that that part of the air is
unaffected by the terrestrial motion on account of its great distance from the earth. The
air closest to the earth, and the things suspended in it, will appear still unless they are
moved about by the wind or some other impulse (impetus). For what else is the wind in
the air but a wave in the sea? (Copernicus 1543, 6a, lines 16–34)3

Let us compare this with a passage from Na
˙
sı̄r al-Dı̄n al-

˙
Tūsı̄’s Tadhkira, a work on

theoretical astronomy (hay�a), whose first edition was completed in 1261. This
passage occurs in Book II, chapter 1, which is concerned with establishing the
general cosmology of the celestial realm according to Ptolemaic principles. As such

˙
Tūsı̄ wishes to prove that the Earth is at rest. But unlike the other “proofs” in this
chapter that for the most part follow Ptolemy’s recourse to observational evidence for
establishing such things as the sphericity of the heavens and Earth, 

˙
Tūsı̄ here rejects

Ptolemy’s empirical approach in a manner strikingly similar to that taken by
Copernicus:

It is not possible to attribute the primary motion to the Earth. This is not, however,
because of what has been maintained, namely that this would cause an object thrown up
in the air not to fall to its original position but instead it would necessarily fall to the west
of it, or that this would cause the motion of whatever leaves the [Earth], such as an arrow
or a bird, in the direction of the [Earth’s] motion to be slower, while in the direction
opposite to it to be faster. For the part of the air adjacent to the [Earth] could conceivably
conform (yushāyi�u) to the Earth’s motion along with whatever is joined to it, just as the
aether [(here) = upper level of air] conforms (yushāyi�u) to the orb as evidenced by the
comets, which move with its motion. Rather, it is on account of the [Earth] having a
principle of rectilinear inclination that it is precluded from moving naturally with a
circular motion. (Ragep 1993, vol. 1, 106–107)

What originally struck me about these two passages was the use of comets by both

˙
Tūsı̄ and Copernicus to bolster their case for the view that the Earth might be
moving but we would not be able to tell this simply by observing objects that
occurred or were thrown in the air. But in examining the texts more closely, I became
aware of other similarities, such as the use of the concept of “following” or
“conforming” used by both men to describe what occurs in the lower as well as the

3 I owe this fairly literal translation to my colleague Steven Livesey, who also helped me gain a deeper
understanding of the passage. He is, of course, absolved of any shortcomings and peculiarities in the
interpretation.
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upper atmosphere (sequi in Latin and yushāyi�u in Arabic).4 I also saw that the structure
of the argument itself – making the case for objects in the lower air conforming to
the Earth’s motion and then bringing forth comets to somehow clinch the matter –
was similar in both cases. Though highly suggestive, these passages alone are not
decisive in proving influence or transmission. For one thing, it has been known for
some time that similar discussions concerning the possibility of the Earth’s motion
exist in the medieval European scholastic tradition. Here an understanding of the
intellectual contexts in each case can not only help elucidate similarities and
differences of corresponding passages but also help answer questions regarding
influence and transmission.

In what follows, I will attempt to deal with some of these contexts by examining
three issues: (1) the use of comets to bolster the case for the Earth’s rotation; (2) the
problem of observational tests; and (3) the debate over the use of natural philosophical
premises in mathematical astronomy.

3. The Use of Comets to Bolster the Case for the Earth’s Rotation

As mentioned above, one of the most striking similarities between the passages by

˙
Tūsı̄ and Copernicus is the appeal to comets. Both use them to provide an analogous
case that would make plausible the notion that the air, and whatever is in it, might
participate in the Earth’s rotation. To follow this argument, one must first understand
the underlying Aristotelian doctrine regarding comets. According to Aristotle, comets
are a sublunar phenomenon and, as such, one might thereby assume that they would
not participate in the daily rotation of the Universe. But Aristotle maintained in the
Meteorology that the “outermost part of the terrestrial world which falls below the
circular motion. . . and a great part of the air that is continuous with it below is
carried round the earth by the motion of the circular revolution.” Aristotle then
proceeded to relate this to the production of comets, which he, and most medieval
writers, took to occur in the upper atmosphere. Indeed it is presumably comets that
led him to conclude that the upper atmosphere was somehow a party to the daily
motion (Aristotle 1984, Meteorology I.vii, esp. 344a5–23). From the point of view of

˙
Tūsı̄ and Copernicus, the fact that Aristotle could argue that the upper part of the
atmosphere could participate in – or “conform” to – the daily motion of the orbs
provided a physical justification for the idea that the lower atmosphere – that is, the
air – could follow the motion of a rotating Earth if the orbs were not the source of
the daily motion. It is worth noting here that Aristotle’s theory of comets was well-
known, and widely accepted, in both medieval Islam and Christendom. This is nicely
illustrated by a passage from Albertus Magnus’s (ca. 1193–1280) commentary on
Aristotle’s Meteorology in which he cites both Avicenna (Ibn Sı̄nā: 980–1037) and

4 E. Rosen in his translation (1978, 16) uses “conform” in the first instance, “accompany” in the other.
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Algazal (al-Ghazāl̄ı: 1058–1111) as purportedly supporting the Aristotelian view of
comets, which is also Albert’s belief.5

The question that then arises is whether anyone before 
˙
Tūsı̄ in the Islamic

tradition, or before Copernicus in the medieval Latin tradition, had used the
Aristotelian theory of comets to bolster the case (but not necessarily argue) for the
Earth’s possible rotation. Though I have thus far been unable to find anyone who did
so, there is a rather similar argument (minus the comets) in Le Livre du ciel et du monde
by Nicole Oresme (ca. 1325–1382). As he puts it, “I should like to present an example
taken from nature, which, according to Aristotle, is true.” As does 

˙
Tūsı̄ and

Copernicus, Oresme uses the alleged circular motion of the fiery upper atmosphere
as part of his evidence for the Earth’s possible rotation (Oresme 1968, 524–527; trans.
repr. Grant 1974, 505–506).

The evidence from Oresme shows that the essential components of the argument
we find in Copernicus were already present and had been put together in fourteenth-
century Europe. It might then seem that this is all that is needed to make the case that
Oresme, not 

˙
Tūsı̄, was the immediate source for Copernicus. (This argument would

also work even if we were to claim that Oresme were somehow influenced by 
˙
Tūsı̄’s

argument.) But as Grant has noted, there is “no evidence that Copernicus … derived
his arguments from medieval sources” (1994, 648). But, of course, neither is there
documented evidence that he derived them from 

˙
Tūsı̄. However, given the strong

evidence of Copernicus’s use of 
˙
Tūsı̄’s astronomical devices, and also the appeal to

comets by both (which is absent in Oresme), one could conceivably claim that
Copernicus was somehow more influenced by his Islamic rather than his European
predecessor, despite the lack of linguistic and cultural affinities.

This possibility is further strengthened by the evidence of a continuing and long-
lived discussion in the Islamic world of the relevance of comets for determining the
Earth’s possible rotation, and the seeming lack of such evidence in Europe prior to
Copernicus.6 For example, in his al-Tu

˙
hfa al-shāhiyya f̄ı al-hay�a, Qu

˙
tb al-Dı̄n al-

Shı̄rāzı̄ (1236–1311) disputed his onetime master Na
˙
sı̄r al-Dı̄n al-

˙
Tūsı̄, not to

mention Aristotle, and stated that if comets did indeed move “by conformity” (bi-’l-
mushāya�a) with the daily motion of the moon’s orb, “then they would remain parallel
to the celestial equator; however, they move from north to south, which is due to a
soul connected to them that moves them sometimes parallel and sometimes not in
parallel [to the equator]” (bāb II, fa

˙
sl 4: Mosul MS, f. 17a = London MS, f. 10b). This

dispute was taken up in a number of commentaries on 
˙
Tūsı̄’s Tadhkira, including one

5 For the English translation, see Thorndike 1950, 68; repr. Grant 1974, 544. The source of Albert’s reference
to Ibn Sı̄nā’s view may be from the latter’s book on meteorology in the Shifā� (1965, 73–74), where a similar
but not exact passage may be found. Albert’s more extensive quotation is from al-Ghazāl̄ı’s Logica et philosophia
(1506, Liber II, Trac. III, Spec. iiii; for the original Arabic see idem 1960–1, 343).
6 I make no claim to having gone through all the possible European medieval sources. But I find no references
to any such discussion in Thorndike 1923–1958, Hellman 1944, Thorndike 1950, Jervis 1985, or Grant 1994.
If such a discussion existed, it also escaped the keen gaze of Pierre Duhem.
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of the most famous and widely read, that of al-Sayyid al-Sharı̄f al-Jurjānı̄
(1339–1413), who was sympathetic to Shı̄rāzı̄’s position on comets but who also
noted its irrelevance when judging whether or not the air might be in conformity
with the Earth’s motion (Jurjānı̄, f. 20a-b).

This issue was also discussed by �Al̄ı al-Qūshjı̄ (d. 1474), who played a prominent
intellectual role in the court of the Timurid Prince Ulugh Beg in Samarqand and was
later invited to establish a school devoted to the sciences by the Ottoman Sultan
Mehmet the Conqueror in the newly Islamized city of Constantinople. Writing in his
commentary on 

˙
Tūsı̄’s theological work, Tajr̄ıd al-�aqā�id, Qūshjı̄ disputed Shı̄rāzı̄’s

dismissal of the daily motion of the comets in conformity with the orbs by citing the
comet of 837 hijra ( = 1433 A.D.), which he claimed to have personally observed. As
he says:

From what we have witnessed, there is clear proof that the sphere of fire (kurat al-athı̄r)
moves with the daily motion. But it is said [viz. by Shı̄rāzı̄] that if this were the case then
the motion of comets would be parallel to the celestial equator; however, this is not so
since sometimes they [move] north from the equator, sometimes south from it. There is,
though, nothing to this [objection by Shı̄rāzı̄]. For according to what we have witnessed,
they do indeed move thusly with their proper motion. But all the planets move this way
– they move with the daily motion while they have their own proper motions, which
may sometimes be to the north of the equator, sometimes south. (Qūshjı̄ 1890, 194)7

This dispute regarding the relevance of the cometary evidence continues into the
sixteenth century. �Abd al-�Al̄ı al-Bı̄rjandı̄, who died in 1525 or 1526 (and thus was
a contemporary of Copernicus), was yet another commentator on the Tadhkira who
brought up this controversy.8 He noted that the question of the conformity of air to
the Earth’s motion would not depend on whether or not the comets moved with the
orb since this was only brought up by 

˙
Tūsı̄ as a supporting argument whose

resolution would not be decisive one way or another (Bı̄rjandı̄, f. 37b).
The point that needs to be stressed here is that this question regarding comets and

their relevance for the problem of the Earth’s rotation was hotly debated for a number
of centuries in the Islamic world. Though Oresme’s argumentation is clearly similar,
he does not use comets directly. As far as I have been able to tell, Copernicus was the
first person in Europe to discuss this matter in a way that so closely follows (or
parallels) the Islamic tradition. Here again, understanding the context (and tradition)
of the debate within each cultural context is important, I believe, for indicating the

7 Though he does not mention Shı̄rāzı̄ by name, the quotation is taken directly from the Tu
˙
hfa and would have

been readily recognized by many of Qūshjı̄’s readers. The comet of 1433 was described by the Italian Paolo
Toscanelli (Jervis 1985, 56–58).
8 It is worth noting that though Bı̄rjandı̄ was Iranian, he, along with a number of other Sunnı̄ intellectuals,
fled the new Shı̄�ı̄ regime of Shah Ismā�ı̄l and went to areas controlled by the Ottomans. Bı̄rjandı̄ himself went
to the Ottoman cities of Trebizond and later Istanbul, where contact with European scholars, either directly
or indirectly, would have presumably been easier (Ihsanoǧlu et al. 1997, vol. 1, 101).
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most likely lines of transmission and influence. In the next two sections, we turn to
other aspects of the intellectual and historical contexts that underlie the arguments of

˙
Tūsı̄ and Copernicus.

4. The Problem of Observational Tests

One of the critical issues arising from the Earth’s possible rotation concerned
observational tests. Put simply, were there observations that could determine whether
the Earth were at rest or in motion? In the Almagest, Ptolemy implicitly assumed that
such observations were possible. There are several aspects to his argument, which we
summarize as follows (Toomer 1984, I.7, 44–45):

1) Because of the speed that one would need to assume for a rotating Earth,
objects not actually standing on the Earth would quickly be left behind and appear
to move toward the west.

2) One might counter (1) by claiming that the air could be carried with the Earth
in its rotation; Ptolemy answers by stating that in this case objects thrown into the air
would still be left behind.

3) One might then claim that the objects were somehow “fused” in the air;
Ptolemy counters that if such were the case these objects would “always appear still”
which flies in the face of our experience.

Clearly both 
˙
Tūsı̄ and Copernicus, in the passages quoted in Section 2 above, are

reacting against Ptolemy, maintaining that his cited observations are not decisive in
determining whether or not the Earth is at rest. This question has a long and intricate
history in Islam whose details could well shed light on European discussions.9 An
indication of the early history of this problem in Islam can be gleaned from al-Qānūn
al-mas�ūdı̄, completed in 1030 by the great polymath Abū �l-Ray

˙
hān al-Bı̄rūnı̄

(973–1048). In it, he reports that some unnamed person held that a heavy body in the
air could have two motions: one circular, which results from being part of the rotating
whole, and the second linear, which is a result of its natural motion downward. As a
consequence of these two motions, a body thrown straight upward would stay aligned
with the point from which it was thrown. The path of the body would not, contrary
to what one observes, be straight up and down but rather a line curving toward the
east (Bı̄rūnı̄ 1954–56, vol. 1, 50–51).10 Under such circumstances, Ptolemy’s type of
observational tests would not be decisive in determining whether the Earth were
rotating. Bı̄rūnı̄ himself disputes this view. Pointing to the great speed of the Earth
that would need to be assumed (which in typical Bı̄rūnı̄ fashion he proceeds to

9 Unfortunately, as noted above, the vast majority of these texts have not been edited or translated.
10 Though Bı̄rūnı̄ names the followers of the Hindu astronomer Āryabha

˙
ta as holding that the Earth is in

motion in both his India (1887, 139; 1888, 276) and Qānūn (1954–56, vol. 1, 49), the “unnamed person” is
probably not of Indian origin since he is said to be a distinguished scholar of “�ilm al-hay�a”, which no doubt
indicates an Islamic personage. Cf. S. Pines (1956), who came to the same conclusion.
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calculate), he claims that an object such as an arrow shot with a violent (i.e. forced)
motion eastward would have its motion combined with that of the air traveling with
the great speed of the Earth while one shot westward would resist it; thus one should
be able to tell the difference if the Earth’s motion existed (Bı̄rūnı̄ 1954–56, vol. 1,
51–53).11

After 
˙
Tūsı̄, the question was taken up with renewed vigor, in large part because of

the above passage from the Tadhkira. Once again his student, Qu
˙
tb al-Dı̄n al-Shı̄rāzı̄,

took a contrary stance, in this case claiming that if the air conformed to the motion
of the Earth, then a large and a small rock thrown, say, along the meridian should
return to Earth at different locations since the air would move the larger less than the
smaller. In general he seems to have agreed with Ptolemy that observation could
determine the question of the Earth’s rotation.12 (We will return to the significance
of this stance below.)

Shı̄rāzı̄’s position, however, was itself soon under attack. Ni
˙
zām al-Dı̄n al-Nı̄sābūrı̄

(writing in 1311) and the noted theologian/scientist al-Sharı̄f al-Jurjānı̄ (in 1409)
both criticized Shı̄rāzı̄ on the matter of the two rocks; they held that they would in
fact have the same quantity of motion as that of the rotating Earth. Hence they
upheld 

˙
Tūsı̄’s view that this conceivable motion of the Earth could not be decided on

empirical grounds.13

This discourse became increasingly sophisticated as various writers attempted to
understand the implications of a rotating Earth and to analyze such ideas as the
“conformity” of the air, and things in the air, with a rotation of the Earth. Al-Qūshjı̄,
for example, attempted to counter Shı̄rāzı̄ by claiming that “what is intended by
conformity of the air is its conformity [with a rotating Earth] along with all that is in
it whether it be a rock or something else, whether small or large” (Qūshjı̄ 1890, 195).
Earlier, Jurjānı̄ had dealt with the notion of “conformity” by invoking the important
distinction between accidental and forced motion. “There would be no difference
between the moving [by the air] of the two rocks by an accidental motion since it
would be in the amount of the [air’s] proper motion whether the accidentally moved
thing were small or big. Any difference between them would only be in the forced
motion” (Jurjānı̄, f. 20b).14 Bı̄rjandı̄ elucidated this further by stating that one may
argue against Shı̄rāzı̄ as follows: “the small or large rock will fall to the Earth along the

11 In order to make sense of the argument, one should change the text on page 52, line 9 from mi�at alf (one
hundred thousand) to the variant bi-thalāthat ālāf (three thousand).
12 Shı̄rāzı̄’s discussion can be found in maqāla II, bāb 1, fa

˙
sl 4 (ff. 46a–47b) of his Nihāyat al-idrāk f ı̄ dirāyat al-

aflāk, which was completed in 1281, and in bāb II, fa
˙
sl 4 (Mosul MS, ff. 15a–18a = London MS, ff. 9b–11a)

of his al-Tu
˙
hfa al-shāhiyya f ı̄ al-hay�a, which appeared in 1284. This section of the Nihāya was translated into

German by E. Wiedemann 1912.
13 In both cases, the discussion occurs in the context of their commentaries on the above-cited passage from

˙
Tūsı̄’s Tadhkira, i.e. Bk. II, Ch. 1, Para. 6. Cf. Ragep 1993, vol. 2, 384; for information on these
commentaries, see ibid., vol. 1, 60, 62. Most of the other commentators on this passage also sided with

˙
Tūsı̄.
14 This passage is also quoted by Bı̄rjandı̄, f. 37a.

152



287Tūsī and Copernicus: The Earth’s Motion in Context

path of a line that is perpendicular to the plane (sa
˙
t
˙
h) of the horizon; this is witnessed

by experience (tajriba). And this perpendicular is away from the tangent point of the
Earth’s sphere and the plane of the perceived (

˙
hiss̄ı) horizon. This point moves with

the motion of the Earth and thus there will be no difference in place of fall of the two
rocks” (Bı̄rjandı̄, f. 37a). Thus Bı̄rjandı̄ makes the case with a concept very close to
what would later be called circular inertia.15

This question of observational tests is of central importance in the work of two
fourteenth-century Frenchmen, namely Jean Buridan and Nicole Oresme, the latter
of whom has been mentioned previously. In his Quaestiones on Aristotle’s De Caelo,
Buridan (ca. 1300–1358), philosopher and sometime rector of the University of Paris,
maintained that there is an observation that negates the possibility of the Earth’s
rotation. This would be an arrow shot straight upward which should, if the Earth
were rotating, not return to the same point from which it was projected since “the
violent impetus of the arrow in ascending would resist the lateral motion of the air
so that it would not be moved as much as the air.” This would then counter the
supporters of the Earth’s rotation who had claimed that “the air, moved with the
Earth, carries the arrow, although the arrow appears to us to be moved simply in a
straight line motion because it is being carried along with us.”16 As can be seen, both
Buridan’s position and that of his antagonist is quite close to what we have seen above
in Bı̄rūnı̄’s Qānūn. Like Bı̄rūnı̄, Buridan holds that an observation can settle the
matter.

A very different perspective is presented by Oresme.17 He holds that no observation
can be decisive since given the scenario outlined by Buridan, in which an arrow or
stone is thrown up into the air, such an object would participate in the Earth’s
hypothetical rotation; thus just as various motions inside a ship would “seem exactly
the same as those when the ship is at rest,” so one could not tell from the action of
the arrow whether or not the Earth were rotating (Oresme 1968, 524–525; trans.
repr. Grant 1974, 505). Oresme thus holds a view that is virtually identical with that
of 

˙
Tūsı̄ and many (but not all) of 

˙
Tūsı̄’s Islamic successors as well as Copernicus. But

Oresme argues a further position that puts him at considerable odds with 
˙
Tūsı̄,

namely that “no argument is conclusive,”18 that is, that neither observations nor
rational arguments from natural philosophy nor even theological arguments could
conclusively show that the Earth was – or was not – moving. On the other hand, 

˙
Tūsı̄

and many of his followers were willing to accept the proofs of natural philosophy on
this matter, which observation and mathematical astronomy, they maintained, could

15 This is not the place to compare Bı̄rjandı̄’s view with those of early modern European scientists such as
Galileo, but one hopes such a comparison will not be dismissed out of hand.
16 Translation due to M. Clagett 1959, 596; repr. Grant 1974, 502.
17 As my colleague Steve Livesey pointed out to me, one should keep in mind that Oresme was professionally
a theologian whereas Buridan was a philosopher mainly concerned with the works of Aristotle. We will return
to the possible significance of this difference below.
18 Oresme 1968, 520–521; trans. repr. Grant 1974, 504. Since this is the main point Oresme is making, it is
repeated several times throughout the passage.
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not decide. Arguing as a theologian, Oresme could afford to be sceptical; as
astronomers, 

˙
Tūsı̄ and his successors needed, indeed demanded, some conclusive

proof concerning a matter of such basic importance to astronomy. But this became
an issue of considerable controversy in Islam as we shall see in the next section.

To conclude this section, we can see that both in Islam and in medieval Europe we
find a comparable range of opinion regarding the matter of the relevance of
observational tests for determining the Earth’s rotation. It should be noted, though,
that the context is rather different; in Islam the discussions mainly occurred within
the astronomical tradition of hay�a whereas in Europe they are to be found within the
commentary tradition on Aristotle’s natural philosophy. And the extent of the
discussion, both in terms of time and participants, would seem to have been much
greater in Islam than in medieval Europe. Again such considerations cannot “prove”
that Copernicus’s arguments on the Earth’s rotation were influenced by Islamic
astronomy. But taken with other considerations, they are certainly suggestive.

5. The Debate over the Premises of Astronomy

In Islam, this debate over the question of the Earth’s possible rotation became
intricately tied to another question, namely the nature of the premises of astronomy
(hay�a) and their connection with natural philosophy (al-

˙
tabı̄�iyyāt, i.e. physics). In

many ways, this latter question was a continuation of a debate that had begun in
antiquity. It was generally agreed that astronomy was both mathematical and physical,
but the debate centered on the extent to which principles based upon natural
philosophy (as opposed to purely mathematical techniques and observational data)
were needed.19 In the Tadhkira, 

˙
Tūsı̄ was quite explicit in maintaining that one

needed, at least occasionally, the results from natural philosophy, which were based on
the a priori methods of the natural philosophers rather than the mathematics and
observations of the mathematical astronomers (Ragep 1993, vol. 1, 38–46). A good
case in point was the question here under consideration: because, according to 

˙
Tūsı̄,

one could not determine by observation whether or not the Earth was in motion, an
astronomer must have recourse to the natural philosophers, who had shown using
other methods that the Earth must be at rest at the center of the Universe (Ragep
1993, vol. 1, 106–107 and vol. 2, 383–385).20

19 Much of the literature on this problem has portrayed the two sides as being on the one hand mathematical
and instrumentalist (interested only in “saving the phenomena”) and on the other physicalist and realist
(interested in the “true” nature of the universe). There have been a number of correctives to this view in recent
years – especially as regards ancient authors – and it has become increasingly clear that physical considerations
were of concern even to someone like Ptolemy or the writers of astronomical tables (zı̄jes). Cf. Ragep 1993,
vol. 1, 24–53, where one may also find references to other discussions of this problem; for how a zı̄j writer
such as al-Battānı̄ (ca. 858–929) was influenced by physics in dealing with questions of mathematical
astronomy, see Ragep 1996, 267–303.
20

˙
Tūsı̄ does not put the matter as explicitly as stated here, but this was the universal understanding of the

passage, which is quoted in section 2 above.
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Though this issue became much more explicit and important for 
˙
Tūsı̄ and his

successors, it certainly predates him. In his work on the astrolabe, written sometime
before 1000 A.D., Bı̄rūnı̄ implies that the question of the rotation of the Earth cannot
be decided by observation and, somewhat surprisingly, declares that this is a difficult
matter whose “resolution should be entrusted (mawkūl) to the Natural Philoso-
phers.”21 But in his later work, al-Qānūn al-mas�ūdı̄, completed in 1030, he claims, as
we have seen, that there is an observational test. One way to interpret Bı̄rūnı̄’s change
of position is to see him as having become more closely tied to a mathematical
approach to astronomical problems and less sympathetic to a philosophical
encroachment upon science. Indeed, in the Qānūn he tells us that for these matters
mathematical investigation is more appropriate than that of natural philosophy since
the latter is “persuasive” (iqnā�̄ı) (Bı̄rūnı̄ 1954–56, vol. 1, 49) and thus does not attain
certitude.22 One is tempted to view this change in Bı̄rūnı̄ as somehow a reaction to
his contemporary and long-term rival Ibn Sı̄nā, who at about the same time Bı̄rūnı̄
was writing the Qānūn was completing his summary of the Almagest, which would
become part of his monumental Shifā�. There, contrary to Bı̄rūnı̄, he seems to dispute
Ptolemy’s reliance on observational tests by stating that “his [i.e. Ptolemy’s]
amazement at their portrayal of something of this heaviness [viz. the Earth] having
such a fast motion … is not something one should put much stock in for it would
only be amazing if they had made it move by compulsion and it were not in its natural
place whereby it had an inclination by nature for another motion.” Ibn Sı̄nā ends the
discussion by stating that “we have shown the impossibility of this motion in the
section on Natural Philosophy” (Ibn Sı̄nā 1980, 25–26).23This gives a clear indication
that he, unlike Bı̄rūnı̄, thinks the best basis for proving that the Earth does not move
is through the rationalist procedures of Natural Philosophy rather than the
observational tests of mathematical astronomy.

Once again, this debate is given new life and intensity by 
˙
Tūsı̄’s Tadhkira, and the

main players will be familiar from the above discussion of observational tests. As we
shall see, this is not coincidental. Shı̄rāzı̄ once more gets the ball rolling. In a way that
hearkens back to Bı̄rūnı̄, he insists, as we have seen, that observation can determine
the Earth’s state of rest. And lurking behind this assertion, again like Bı̄rūnı̄, is the
need to establish the science of astronomy (i.e. �ilm al- hay�a) without recourse to
natural philosophy. Shı̄rāzı̄ calls upon the Ancients for support:

21 This work, Ist̄ı�āb al-wujūh al-mumkina f ı̄ 
˙
san�at al-as˙

turlāb, is unedited, but the above passage may be found
in the Persian edition of Bı̄rūnı̄’s al-Tafhı̄m (1367 H. Sh., 297).
22 This difficult passage is far from clear, but the interpretation given here is reinforced elsewhere in the Qānūn
(vol. 1, 27) where Bı̄rūnı̄ tells us that Ptolemy’s physical proofs for the sphericity of the heavens are persuasive
(iqnā�̄ı), not necessary (

˙
darūr̄ı). He also chides Ptolemy for mixing natural philosophy and metaphysics with

astronomy in the latter’s Planetary Hypotheses (Bı̄rūnı̄ 1954–56, vol. 2, 634–635; for a translation, see Ragep
1993, vol. 1, 40).
23 Ibn Sı̄nā is most likely referring here to chapter 7 of his De Caelo, which forms part of the Shifā� (Ibn Sı̄nā
1969).
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If one asks: why did the Ancients [probably Ptolemy] disprove the Earth’s motion toward
the East with what you have stated and they did not disprove it by [resorting to] its having
the principle of rectilinear inclination and thus is prevented by nature from moving
circularly? We answer: This is: (1) either because it does not follow from a denial of a
natural circular motion of the Earth that one reaches the desired end since it is possible
that it might move in a circle by compulsion; or (2) because this proof is natural
philosophical not mathematical and they [i.e. the Ancients] avoided using non-
[mathematics] in their inquiries. For this reason, to establish the circularity of the simple
[elements] they relied upon matters based upon observation and testing (al-ra

˙
sad wa-’l-

i�tibār) and not upon that which is bound to natural [philosophy] – for example, that a
form other than a sphere would entail a dissimilarity of parts. (Shı̄rāzı̄, Tu

˙
hfa, Mosul MS,

f. 17b = London MS, f. 11a)

The reason for this aversion to natural philosophy is made explicit by Shı̄rāzı̄ in his
introduction to the Nihāya. There he paraphrases a famous and controversial passage
from the introduction of Ptolemy’s Almagest: “Astronomy is the noblest of the
sciences… its proofs are secure – being of number and geometry – about which there
can be no doubt unlike the proofs in physics and theology” (Shı̄rāzı̄, Nihāya, preface,
f. 34b).24

Despite this skepticism, Shı̄rāzı̄ still retained, as had 
˙
Tūsı̄, sections on the natural

philosophical principles needed in astronomy both in his Nihāya and in the Tu
˙
hfa. But

in the next century Qūshjı̄ would take the bold step of declaring that astronomy does
not depend upon natural philosophy and metaphysics and can dispense with them. In
his commentary on 

˙
Tūsı̄’s theological work, the Tajr̄ıd al-�aqā�id, Qūshjı̄, responding

to attacks by certain theologians who had attempted to discredit astronomy by
associating it with astrology and Aristotelian natural philosophy and metaphysics,
claimed:

That which is stated in the science of astronomy (�ilm al-hay�a) does not depend upon
physical (

˙
tabı̄�iyya) and theological (ilāhiyya) premises (muqaddamāt). The common

practice of authors to introduce their books with them is by way of following the
philosophers; this, however, is not something necessary and it is indeed possible to
establish [this science] without basing it upon them. For of what is stated in [this science]:
(1) some things are geometrical premises which are not open to doubt; (2) others are
suppositions (muqaddamāt 

˙
hadsiyya) as we have stated; (3) others are premises determined

by (ya
˙
hkumu bihā) the mind (al-�aql) in accordance with the apprehension (al-akhdh) of

what is most suitable and appropriate; … and (4) other premises that they state are
indefinite (�alā sabı̄l al-taraddud), there being no final determination (al-jazm). Thus they
say that the irregular speed in the sun’s motion is either due to an eccentric or to an
epicyclic hypothesis without there being a definitive decision for one or the other.
(Qūshjı̄ 1890, 187)25

24 For the comparable passage in the Almagest, see Toomer 1984, 36.
25 A lengthy section from Qūshjı̄ that contains this passage is quoted by al-Tahānawı̄ (1862, vol. 1, 48–49). For
a translation of the entire passage see Ragep 2001, appendix.
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It is worth noting that Qūshjı̄ was true to his principles; in his elementary hay�a
work Risāla dar �ilm-i hay�a, he took the highly unusual step of dispensing with a
section on natural philosophy with which almost all other similar treatises began.26

What this has to do with the Earth’s rotation becomes clear later in his
commentary when Qūshjı̄ deals with Shı̄rāzı̄’s views. He first states that “it is not
established that what has a principle of rectilinear inclination is prevented from
[having] a circular motion,” which is in answer to the view that the Earth cannot
rotate since its natural motion is rectilinear. Secondly, as we have seen above, he
counters Shı̄rāzı̄ by asserting that the “conformity of the air [with a rotating Earth]
would be its conformity along with all that is in it, whether it be a rock or something
else, whether small or large.” He then ends with a startling conclusion: “Thus nothing
false (fāsid) follows [from the assumption of a rotating Earth]” (Qūshjı̄ 1890, 195).

Qūshjı̄’s conclusion needs to be taken in context with his earlier discussion of the
premises of astronomy. By rejecting the need for Aristotelian natural philosophy, he
has made the determination of the Earth’s rotation (or lack thereof) dependent upon
observational evidence. But contrary to Shı̄rāzı̄, he insists that such evidence is not to
be had since the possibility of the “conformity” of the air with such a rotation makes
the two-rock experiment irrelevant. This leaves him in the rather surprising position
of being apparently an agnostic as regards this question. His position is therefore quite
close to that of Copernicus; given a more compelling physics – one based upon his
four types of premises and in conformity with observational evidence – he would
seem prepared to accept a rotation of the Earth. This makes him almost unique
among medieval astronomers and philosophers.27

It should therefore not surprise us that other astronomers would find such a
position intolerable. Bı̄rjandı̄ for one paraphrases the above passage from Qūshjı̄
(regarding the premises of astronomy),28 and then gives his response:

This is contestable. For many of the questions of this science are based upon the orbs
being simple [bodies], the impossibility of [their] being penetrated and so on, which are
based upon the two sciences [i.e. natural philosophy and metaphysics]. The restriction to
what he has stated is unacceptable, as will become clear in the investigations of this book.
(Bı̄rjandı̄, f. 7a–7b)

Exactly how this will become clear is made clear when we reach Bı̄rjandı̄’s
discussion of the possible rotation of the Earth. As we have seen, Bı̄rjandı̄, like Qūshjı̄,

26 This work was originally in Persian and, given the evidence of the extant manuscripts, quite popular. It was
translated by Qūshjı̄ himself into Arabic and dedicated to Mehmet, the Conqueror (Fāti

˙
h) of Constantinople,

whence it was called al-Risāla al-fat
˙
hiyya. Cf. Haidarzadeh 1997, 24, 30–32, 41; Ihsanoǧlu et al. 1997, vol. 1,

27–35; and Pingree 1996, 474.
27 Other possibilities (as indicated above) are Bı̄rūnı̄’s “unnamed astronomer” and the “followers of
Āryabha

˙
ta”.

28 Curiously, Bı̄rjandı̄ does not mention Qūshjı̄ by name but simply refers to him as “one of the eminent
scholars” (ba�

˙
d al-afā

˙
dil).

˙
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argued against the view that observations could determine whether or not the Earth
rotates. But unlike Qūshjı̄, he was willing to depend upon the standard Aristotelian
natural philosophy to decide the issue. In reacting to Shı̄rāzı̄’s explanation (cited
above) of why the ancient astronomers did not use Natural Philosophy to prove the
Earth’s state of rest, Bı̄rjandı̄ reasserts his previous position: “As mentioned above,
natural philosophy is among the principles of astronomy (hay�a), so it is not improper
to determine a question of astronomy with premises that are proven in natural
philosophy” (Bı̄rjandı̄, f. 38a).

Later in this chapter, Bı̄rjandı̄ again brought the issue of the use of Natural
Philosophy in astronomy to the question of the Earth’s rotation. He admits that, in
general, Natural Philosophy strives to prove the “why” of nature (the “reasoned fact”)
whereas astronomy simply proves the fact of a thing. However, “the proof of the lack
of rotational motion of the Earth is. . .of the ‘reasoned fact’ (limmı̄)” (Bı̄rjandı̄, f.
39b).29 Whereas Shı̄rāzı̄, as well as Qūshjı̄, wished to avoid such a conclusion,
Bı̄rjandı̄, following 

˙
Tūsı̄, is willing to accept that astronomy must on occasion defer

to Natural Philosophy.
We can now return to a comparison with Buridan and Oresme. Buridan notes that

some astronomers hold that since either hypothesis (a stationary or a rotating Earth)
can save the appearances, they “posit the method which is more pleasing to them”
(Clagett 1959, 595; repr. Grant 1974, 501). Underlying this position is a certain view,
which he reports but also seems to agree with, namely “that it suffices astronomers
that they posit a method by which appearances are saved, whether or not it is so in
actuality” (ibid.).30 Buridan thus takes for himself the role of determining the actual
nature of things, in this case whether or not the Earth moves. He therefore must do
this as a natural philosopher, not as an astronomer, which in any event is evident since
his discussion occurs within the context of Aristotle’s De Caelo, a part of the Natural
Philosophy corpus. This then is in marked contrast to several of the Islamic writers we
have been dealing with who took it upon themselves, in an astronomical context and
as astronomers, to determine by factual (innı̄) proofs mainly based on empirical
evidence whether or not the Earth moved. Even astronomers such as 

˙
Tūsı̄ and

Bı̄rjandı̄, who were willing to defer to Natural Philosophy in this one case, were
nevertheless careful to delineate those matters in which the astronomer can
determine the true state of affairs (by mathematics and observations) from those very
few he cannot. This simply is not an issue for Buridan; by claiming that astronomers
are not interested in reality, he as natural philosopher can use both observational facts

29 For a discussion of the significance of the fact/reasoned fact dichotomy for distinguishing astronomy from
natural philosophy, see Ragep 1993, vol. 1, 38–41 and vol. 2, 386–388.
30 This extreme version of the “saving the phenomena” thesis is, in fact, something of a distortion of what the
ancient Greek astronomers actually did. Someone like Ptolemy, for example, was quite obviously interested
in the reality of his system as is made clear not only from his cosmological Planetary Hypotheses but also from
his more mathematical Almagest. Islamic astronomers were, for the most part, also considerably interested in
the physical reality of their models. Cf. Lloyd 1991 and Ragep 1990.
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(the domain held closely by Islamic astronomers) as well as rational arguments (the
traditional realm of the natural philosophers).31

A more striking comparison can be made with Oresme. Since his purpose is to
show that “no argument is conclusive” in determining whether it is the Earth or the
heavens that move, he obviously does not believe that astronomy can be put on an
absolute foundation, whether by astronomical, physical or metaphysical arguments.
One might compare this attitude with that of Qūshjı̄, who also allows for some
uncertainty in the premises of astronomy, but the context is quite different. Qūshjı̄,
like all the Islamic writers mentioned in this paper, was committed to the importance
of astronomy not only as a way to reach truth but also as a way to glorify God.32

Many, if not most, Islamic astronomers would agree with Shı̄rāzı̄ that the
mathematical science of astronomy was the most sure way to obtain knowledge of
cosmological matters, i.e. God’s creation. Despite Oresme’s incisive and subtle
argumentation, which cannot but elicit our admiration, Oresme’s purpose in this
passage from Le Livre du ciel et du monde is not to establish the foundation of
astronomy. If anything, it is the exact opposite. At the end of the passage he tells us
his exercise can “serve as a valuable means of refuting and checking those who would
like to impugn our faith by argument” (Oresme 1968, 538–539; trans. repr. Grant
1974, 510). However one interprets this, it is clear that Oresme believes the lesson to
be drawn is theological rather than astronomical or physical.33

The point that needs to be made here is that, despite their brilliance, Buridan and
Oresme were simply not arguing within an astronomical context, at least as it was
understood in Islam and as it would later be understood in Europe. The question of

31 The use of observations to support propositions in natural philosophy, rather than to prove them (which
ideally should be done using rational arguments rather than observational evidence), goes back to Aristotle
himself, who in De Caelo states at one point that “our theory [of the unchanging aether] seems to confirm
experience and to be confirmed by it” (I.3, 270b4–5). That Buridan’s decisive argument is based upon
observations rather than a priori premises perhaps indicates a continuing overlap (and confusion) of natural
philosophy and astronomy (which both Bı̄rūnı̄ and Qūshjı̄ deplore), but it does not in itself make Buridan’s
argumentation “astronomical” any more than Ptolemy’s occasional recourse to “physical” arguments makes
the Almagest a work of natural philosophy. But one should not draw too fine a line; the main point that I wish
to make here is that Buridan is arguing in the mode of a natural philosopher and using whatever arguments
seem appropriate.
32 Qūshjı̄ 1890, 187: “Whoever contemplates the shadows on the surfaces of sundials will bear witness that this
is due to something wondrous and will praise the [astronomers] with the most laudatory praise.” A similar
sentiment was expressed by al-Sharı̄f al-Jurjānı̄ in his commentary on the Mawāqif, a famous theological work
by al-Ījı̄; cf. Sabra 1994, 39–40 and Ragep 2001.
33 E. Grant has interpreted this to mean that “by showing that it was impossible to know which alternative is
really true, Oresme, the theologian, succeeded in using reason to confound reason” (1974, 510, note 61). E.
Sylla has taken a somewhat different view and argued, rightly in my opinion, that Oresme was not seeking
to “humble reason” but rather to establish that an apparently “unreasonable” tenet, whether the Earth’s
rotation or one of the articles of Christian faith, “may in fact be quite defensible by rational argument” (1991,
217–218). Grant has defended his interpretation against that of Sylla and insisted that “Buridan arrived at his
conclusion on the basis of rational argument and the senses” whereas Oresme “decided the issue on the basis
of scripture and faith” (1994, 647). But whichever interpretation is correct, it should be clear that Oresme
was not writing to establish the proper premises of astronomy.
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the proper foundation of astronomy would therefore not arise. On the other hand,
the Islamic writers quoted above were struggling with just this question since they
identified themselves so closely with the mathematical traditions they had inherited
from antiquity.34 For this reason, I believe it is easier, and more natural, to associate
Copernicus’s argumentation with his Islamic astronomical predecessors rather than
with his European scholastic ones. Though admittedly Copernicus’s arguments were
not conclusive but “make it more likely that the earth moves than that it is at rest”
(Rosen 1978, 17), it is noteworthy that just such an alternative was made theoretically
possible by Qūshjı̄, who opened up the possibility of the Earth’s rotation if a coherent
(but not necessarily proven) alternative to Aristotelian physics could be put forth. In
view of his theoretical position, Qūshjı̄ for one might well have found Copernicus’s
alternative, that the whole Earth could have a circular natural motion different from
the rectilinear motion of its parts (Rosen 1978, 17), compelling.35 This simply does
not seem to be an actual possibility that could be maintained by either Buridan or
Oresme.

6. Conclusion

In seeking to understand the possible connection between the passages in 
˙
Tūsı̄’s

Tadhkira and Copernicus’s De Revolutionibus, it is crucial to understand the intellectual
contexts in which those passages were produced. As we have seen, the Islamic
discussion regarding the possible rotation of the Earth spans more than 600 years. 

˙
Tūsı̄

is one of a large number of astronomers, philosophers, and theologians who dealt
with this issue in increasingly sophisticated terms as each generation added new
insights into the problem. Thus someone like Bı̄rjandı̄, writing in the sixteenth
century, could quote and react to many of the main players, including 

˙
Tūsı̄, Shı̄rāzı̄,

Jurjānı̄, and Qūshjı̄, who themselves were well aware of their predecessors. As we have
seen, the latest members of this debate, Qūshjı̄ and Bı̄rjandı̄, had already anticipated
the main lines of argument that would animate the debate in Europe that began with
Copernicus’s bold assertion of a rotating Earth, an assertion that Qūshjı̄ had
tentatively suggested in the previous generation.

None of this, of course, proves that Copernicus was indebted to his Islamic
predecessors and contemporaries on this point. What it does show is that one of the
crucial arguments used by him had already been debated extensively in the adjoining
cultural area. And furthermore, it had been debated as part of an ongoing astronomical
debate and not simply as a scholastic, philosophical, or theological exercise as was the
case in fourteenth-century Europe. Indeed, the question of the Earth’s rotation

34 This is true even when they were writing in a theological context as Qūshjı̄ was in the remarks quoted
above. In other parts of the Shar

˙
h Tajr̄ıd, he was at some pains to defend astronomy from those theologians who

would disparage it (Ragep 2001).
35 We should recall that Qūshjı̄ also raised the possibility that something could have both a rectilinear
inclination and a natural circular motion (see above).

160



295Tūsī and Copernicus: The Earth’s Motion in Context

became a staple of the larger question of the role of Aristotelian physics in
mathematical sciences, a question whose resolution would have such profound
consequences for the history of science in sixteenth- and seventeenth-century
Europe.

It is thus not only the similarity of the arguments used by 
˙
Tūsı̄ and Copernicus, but

the intellectual contexts that make the case for influence and transmission so strong.
Added to the overwhelming evidence that Copernicus also used Islamic astronomical
models, the case becomes, in my view, compelling. One is still, though, left with the
conspicuous lack of textual evidence in the form of translations to cinch the case. This
indeed is a puzzle and, perhaps, forces us to look much more seriously at the
possibility of oral transmission and contemporary interaction. For those accustomed
to dealing with the early thirteenth century as the terminal point of Islamic influence
on Europe, this suggestion will seem extreme and unwarranted. But given the
increasing evidence of untranslated Islamic scientific products showing up in early
modern Europe, it is time to rethink the cultural and geographical boundaries of this
crucial period in the history of science.36
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˙
hān Mu

˙
hammad b. A

˙
hmad. 1367 H.Sh./1988. Al-Tafhı̄m li-awā�il ˙
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